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We are concerned with the following completeness-type property of a
metrizable Abelian group X considered in [5]:

(K) Every sequence (x,) in X with x, —0 contains a subsequence (x,,)

such that the series ) Xp, IS convergent.
k=1
As is well known, (K) holds if X is complete. In fact, (xn,) can then be

chosen in such a way that the series ) X, 18 subseries convergent. The
k=1

existence of a noncomplete metrizable topological linear space with property

(K) was first proved, under the continuum hypothesis, by the second-named

author ([5], Theorem 2) and next, without that hypothesis, by I. Labuda and

the third-named author ([6], Theorem 2).

The present paper falls into two independent sections. Section 1 is
devoted to constructing, for a given nondiscrete metrizable complete Abelian
group of cardinality 20 satisfying some algebraic assumption, a dense proper
subgroup with property (K) (Theorem 1; cf. also Theorem 1’). In Section 2
we prove that every group with property (K) is a Baire space (Theorem 2),
which seems to indicate that the former property is a good substitute for
completeness. On the other hand, we construct metrizable Baire linear spaces
without property (K) (Theorem 3).

1. Existence of dense subgroups with property (K). We start with some
purely algebraic considerations. Let Z be an uncountable Abelian group and
denote by 3 the cardinality of Z. We assume that Z satisfies the following
condition:

(*) There exists 3, < 3 such that for all ne N and zeZ with z # 0 we
have card (xeZ: nx =z} < 3o-
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Note that (*) holds if the subgroup of all elements of Z of finite order
has cardinality less than 3 or if all non-zero elements of Z are of the same
order.

Given E c Z, we denote by (E) the subgroup of Z generated by E.
With this notation we can formulate

LemMma 1. Let (S,),<,, where vy is an initial ordinal with cardy < 3, be a
(transfinite) sequence of subsets of Z with cardS, = 3. Then there exists a
sequence (Z,), <, of subgroups of Z with the following properties:

() Z,n< U Z,> =10} for all a <.

a’' <y
a’ #a

(i) Z,nSp #Q for all a <P <y.

Proof (cf. [5], proof of Theorem 2, and [6], proof of Theorem 2).
Applying (%), it is easy to construct, by transfinite induction, a double
sequence [xf: B < a <y} of elements of Z such that for all B<a <7y

(1) <E>n(XE: p<a’'<aora=aand g <p})={0},

() xtes,.

(At the first stage we choose xJ, next x?, x!, and so on.) It follows from (i)’
that for any disjoint finite subsets E, F of {xf: B<a <7y} we have
(EYn{F) = {0}. Thus, it is enough to put Z, = (|x}.: a < a’ < y}) for all
o <y.

Conversely, in case 3 is a regular cardinal, e.g., 3 = X,, the assertion of
Lemma 1 implies (). Indeed, if (*) fails for some nyeN and zyeZ with
zo # 0, then Lemma 1 fails for y=2 and S, =S, = {x€Z: nygx = z,}.

We shall need the following version of Proposition 2 of [6].

PropoSITION 1. Let X be a Hausdorff Abelian group and let (x,) be a

ao
sequence in X such that x, # 0 and the series ) X, is subseries convergent.

n=1
Then there exists a subsequence (x4,) with the following property:

if ) Ox, =0 and )e{—1,0,1}", then (8,) = 0. In particular,
k=1

card{ Y &,x,: (g€ (0, 1}V} =2%0,
n=1

Proof. Clearly, it is enough to define n, <n, <... so that

{ i OmXm: Om=—1,0, 1} = X\{x,,}.
m=ng+1

Put n, =1 and proceed by induction using the property that the series

> o]

Y é,x, are uniformly Cauchy and X\{x,} is a neighbourhood of 0 in X.
1
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Remark 1. The proof above yields, in fact, a partition of N into two
increasing sequences (r,) and (s,) such that both (x,) and (x,) satisfy the
conclusion of Proposition 1 (cf. [6], Proposition 2).

THeoreM 1 (cf. [6], Theorem 2). Let X be a nondiscrete metrizable
complete Abelian group with card X = 2 ™0 such that the equation nx =z has
(at most) countably many solutions given ne N and z€ X with z #0. Then
there exists a sequence (X,),<,, where ¢ is the initial ordinal of cardinality
2 °, of dense subgroups of X with the following properties:

(i) X,n< U Xp>=10] for all a < .

a’ <¢
a’ #Fa

(i1) For each sequence (x,) in X such that x, # 0 and the series Z X, is
n=1

subseries convergent there exists a sequence (&) € |0, 1!¥ not eventually zero

with ) erx,€X, for all a < .

n=1

In particular, X, has property (K).

Proof. Let % be a base for the topology of X with card % = 2™°.
Denote by 7 the family of all sets

{Y eyx,: (e)€{0, 1}V is not eventually zero},

n=1
where (x,) satisfies the conditions of (ii). We have
card(# v ¥) =

and so we can arrange A vV into a sequence (Sa),<,,, with each element of
Ao v repeated 2 "0 times. As X is nondlscrete and complete, using
Proposition 1, one can easily show that card S, = 2 ™0 for all & < ¢. Hence, in
view of Lemma 1, there exist subgroups X, of X satisfying (i) and
X, nW#Q® for all We vy . It follows that X, is dense in X and (ii)
holds.

Remarks. 2. The completeness assumption in Theorem 1 can be ac-
tually replaced by property (K). In this case one has to apply Proposition 1
in the completion of X. That cardS, =2 "o then follows by a well-known
result of Sierpinski asserting the existence of 2 "0 almost disjoint (infinite)
subsets of N. ’

3. For X =R the X,’s can be chosen subspaces of R, where R is
considered a linear space over the rationals Q, with

@® X,=R.

a<e
In this case the proof is closer to that of Theorem 2 of [6] and is based on
the equality dimling E = card E for every uncountable subset E of R.
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Reverting to the beginning of this section, we establish a general result
on existence of subgroups satisfying condition (*).

LEMMA 2. Every uncountable Abelian group Z contains an uncountable
subgroup W satisfying condition (*) with 3o = N,. If Z is, moreover, equipped
with a group topology, then W can be chosen closed.

Proof (cf. [2], proof of Lemma 3). Put

Z[n]=|xeZ: nx=0!.

If card Z [n] < N, for all ne N, then Z itself is as desired. In the other case,
denote by n, the first ne N with card Z[n] > N,. In order to prove that W
= Z[n,] satisfies (x) with 3o = N,, fix ne N and zeZ with z # 0. Let nx,
=z = nx,, where x,, x,€Z[ny]. Then n # ny, and so we may assume that
n < ny. It follows that x;, —x,e |J Z[k] while card( U Z[k]) < N,. This

k<ng k<ng
shows that W is as desired.

THEOREM 1'. Every nondiscrete memzable complete Abelian group X of
cardinality 2 0 contains a direct sum of 2 "0 nonclosed subgroups with prop-
erty (K).

Proof. We may assume that X is separable by choosing an arbitrary
nondiscrete countable subset E of X and taking the closed subgroup of X
generated by E. Hence the assertion follows by an application of Lemma 2
and Theorem 1.

Lemmas 1 and 2 yield the following improvement of a result recently
published by HaraziSvili ([2], Lemma 3).

ProOPOSITION 2. Every uncountable Abelian group contains a direct sum of
N, subgroups each having cardinality N, .

Let us note that this last proposition can also be obtained by analyzing
the proof of a related result of Scott ([7], Theorem 9).

2. Property (K) and Baire category. Recall that a topological space X is
named a Baire space provided for every sequence (U,) of dense open subsets

of X the set () U, is dense in X (cf. [4], Theorem 1.13). As easily seen, for
n=1
X being a topological group it is enough to require that the neutral element

of X is in the cloesure of () U,. In view of a classical theorem of Banach
n=1

([4], Theorem 1.6), the latter condition can further be weakened to

N U, # ® or, in other words, to X being of second category. The result

n=1

just mentioned will not be used in the sequel in its full generahty although its
application would simplify slightly the proof of Theorem 2 below. For X
being a topological linear space, however, this result is straightforward and
will be used in the proof of Theorem 3 in the sequel
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THEOREM 2. Every group X with property (K) is a Baire space.
Proof. Let || be a norm in X. Fix a decreasing sequence (U,) of

dense open subsets of X. We shall prove that 0 is in the -closure of ﬁ U,.
To this end, given 6 > 0, we shall construct a sequence (x,) in X"=alnd a
sequence (V,) of open subsets of X with the following properties:

(@) |x,| <6-277,

(b) V cU,,

(c)z axeﬂ V" for all ¢ =0, 1,

where, by dcﬁmtlon A% =X and A! = A for every subset A of X.

For n =1 choose x, e U, with |x,| < §-27!. Next choose an open set V,
such that x, eV, and V; < U,. Suppose now the inductive construction has
been carried out up to some n. Then

V=0 (N ¥~ (T &x)

=01 i=1 i=1

is, in view of (c), a neighbourhood of 0 in X. Moreover,

n

U= N (Ups1— Y &)

g=0.1 i=1
is a dense open subset of X. It follows that there exists x,,,€U nV with

|Xps 1) <6:27C*D Let U’ be an open subset' of X with x,,,eU’ and
U cU~nV. Put

Viey = _{% (U’+.Z & X;)-

From U’ < U we infer that U'+ Z gx;<U,,, for g =0, 1. Hence (b)

holds for n+1. =
It follows from x,,,eU’ = V and the definition of V that

Y oxtxeie () ViV,
i=1
for ¢ =0, 1. This together with the inductive hypothesis proves (c) for n+1.
In vnew of (K) and (a), there exists a subsequence (x ) such that the

2 ¢}
series Z x,, converges to some x€ X. We claim that x| <é and xe 1 U,.
=1 n=1

The first assertion follows immediately from (a). By (c), ) XweV, for all i
k=1

(1 <i<m). Hence xe ﬂ o> and so, in virtue of (b), xe ﬂ Uy, a U,.

Since 6 > 0 was arbltrary, the proof is complete.
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Theorem 2 and Pettis’ lemma ([1], Theorem 5.1) yield, in view of [4],
Proposition 1.3, the following

CoOROLLARY. Let X be a metrizable Abelian group which has the Baire
property in its completion. Then X has property (K) if and only if X is
complete.

The converse of Theorem 2 fails in the following general sense.

THEOREM 3. Every infinite-dimensional F-space X contains a subspace
without property (K), which is a Baire space.

Proof. We shall construct an increasing sequence (X,) of subspaces of
X without property (K) such that

X=U X,
m=1

Then, by Baire’s theorem, X, is of second category in X for some my.
Hence, in view of [4], Proposition 1.3, X, 1is of second category in itself,
and so it is a Baire space.

In order to construct the X,’s we shall make use of a sequence (x,) in X
with the followmg two properties:

mo

(a) Z x, is subseries convergent.

(b) For each bounded sequence (4,) of scalars such that ) 4,x, =0 we
have (4,) = 0. n=1
(The existence of such a sequence follows from, e.g., Theorem 1 of [6].)
Let |A,: meN] be a partition of N into infinite sets. Put

Y,=ln{) 14(mx,; Ac () A4 or A is finite|]
n=1 i=1

and
Y=U Y,.
m=1

(The deﬁmtnons make sense in view of (a)) Let Z be an algebranc comple-
ment of Y in X, and put X, =Y,®Z. Then, clearly, U X,=X.

Moreover, in view of (b) and the definition of the Y,’s, we have
Z lA(n)xneymﬁ»l\Ym
n=1

for each infinite A = A4,,,,. Hence, taking into account that X, ~ Y, ,, = Y,,
we get

Z IA(n)xn¢Xm'
n=1

Thus X, does not have property (K).
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In connection with Theorem 3, we note that, apparently, the first
example of a noncomplete normed Baire space is due to Hausdorff ([3],
p. 303).

Since a topological space which contains a dense Baire space is itself a
Baire space ([4], Theorem 1.15), Theorems 2 and 3 (along with Theorem 2 of
[6]) suggest the following

ProBLEM. Does every metrizable Baire linear space contain a dense
linear subspace with property (K)? (P 1279)

Postscript. We have recently learned that property (K) had already
been isolated, but not given a name, by S. Mazur and W. Orlicz, Sur les
espaces métriques linéaires (II), Studia Mathematica 13 (1953), p. 137-179;
2.83 (see also A. Alexiewicz, On sequences of operations (II), ibidem 11
(1950), p. 200-236; postulate (a3), p. 203).

For some results related to the subject of the present paper see
Z. Lipecki, On some dense subspaces of topological linear spaces, Studia
Mathematica 77. in print.
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