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ON THE STRUCTURE OF INDECOMPOSABLE MODULES
OVER ARTIN ALGEBRAS

BY

ANDRZEJ SKOWRONSKI (TORUN)

When one studies the finitely generated modules over an Artin ring, one
examines basically the indecomposable ones. In the last few years there were
many new insights into the structure of the indecomposable modules over
Artinian rings (see [2], [3], [6]-[9], [11], and especially [10] for fuller
bibliography). In particular, the classes of indecomposable modules, called
modules with waists, cores, cocores, and s-indecomposahle modules, were
introduced and studied in [2], [10], [11]. In this paper we introduce new
classes of indecomposable modules which extend essentially a hierarchy of
those defined in [11]. Namely, for a given positive integer s, we define a class
of indecomposable modules which we call (s+3)-indecomposable modules.
Dually, we define also classes of —(s+ })-indecomposable modules (see
Section 1). The classes of 3-indecomposable modules and —3-in-
decomposable modules are larger than previously known fundamental
classes of indecomposable ones. One of the aims of this paper is to prove
that if every indecomposable injective module over a left Artin ring has finite
length and every indecomposable module of finite length is either 3-
indecomposable or —3 -indecomposable, then the ring is of finite represen-
tation type, ie. it has only a finite number of nonisomorphic finitely
generated indecomposable modules. Moreover, we give a complete classifi-
cation of radical squared zero Artin algebras such that every indecomposable
module is either 3-indecomposable or —3 -indecomposable. Recall that an
Artin algebra is an Artin ring which is a finitely generated module over its
center, being a commutative Artin ring.

The paper is divided into four sections. In Section 1. for a given positive
integer s we define the (s+3)-indecomposability and —(s+94)-in-
decomposability of modules and we show how these concepts are related
with the previously known ones. Moreover, we give examples showing that
the classes of indecomposable modules introduced here and in [11] are in
fact distinct. In Section 2 we show that if indecomposable injective modules
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over a left Artin ring have finite length, then the lengths of 3-
indecomposable and —3 -indecomposable modules are bounded. Hence we
obtain the result stated above. Section 3 is devoted to the study of 3-
indecomposable and —3 -indecomposable modules over Artin algebras with
radical square zero. Applying the technique of Auslander - Reiten sequences
[3] we prove some criteria for the existence of such modules. Section 4
contains a classification of radical squared zero Artin algebras such that
every indecomposable module is either 3-indecomposable or —3-in-
»decomposable. Some consequences of this classification are also stated.
Throughout the paper, rings are assumed to have an identity element,
modules are unitary left modules, and indecomposable modules are nonzero.
Moreover, for a ring R, R°® denotes the opposite ring and mod R denotes
the category of finitely generated R -modules.

1. Classes of indecomposable modules. We begin by recalling a hierarchy
of classes of indecomposable modules due to Green [11].

Let R be a ring and let M be an R-module. A submodule N of M is
called nonsuperfluous if there exists a proper submodule N° of M such that
N+ N’ = M (see [5]). Dually, a submodule Q of M is called nonessential if
there exists a proper submodule Q' of M such that QnQ’' = 0. Let s be a
positive integer. We say that M is s-indecomposable if the intersection of any
its s+ 1 nonsuperfluous submodules N,, ..., N;,, such that

s+1

N,':M
i=1

is nonzero. We say that M is oc -indecomposable if M is s-indecomposable
for all s > 1. Moreover, we say that M has a core if the intersection of all
nonsuperfluous submodules of M is nonzero. These definitions have the
following duals which, in general, lead to a distinct hierarchy of classes of
indecomposable modules. We say that M is —s-indecomposable if the sum of
any its s+1 nonessential submodules Q,, ..., Q,,,; such that

s+1

NQ=0
i=1

is not M. We say that M is —oo-indecomposable f M is —s-in-
decomposable for all s > 1. Finally, we say that M has a cocore if the sum
of all nonessential submodules of M is not M. Modules with cores and
cocores were investigated in [10].

We introduce new classes of indecomposable modules which, in general,
extend essentially the above hierarchy.

Definition 1.1. Let R be a ring and let M be an R-module. Let s be a
positive integer. We say that M is (s-+3) - indecomposable if the intersection of
any its s+ 1 nonsuperfluous submodules is nonzero. Dually, we say that M is
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—(s+4)-indecomposable if the sum of any its s+ 1 nonessential submodules
is not M.

From the definitions we obtain easily the following proposition which
shows how these concepts and the above ones are interrelated.

ProposiTioN 1.1. Let R be a ring and let M be an R-module. Then:
(i) M is indecomposable iff M is 1-indecomposable.
(i) If M is (s+1)-indecomposable, s>1, then M is (s+3%)-
indecomposable.
(iii) If M is (s+1)-indecomposable, s > 1, then M is s-indecomposable.
(iv) If M has a core, then M is oc -indecomposable.
(v) M is indecomposable iff M is — 1 -indecomposable.
(vi) If M is —(s+1)-indecomposable, s > 1, then M is —(s+7%)-in-
decomposable. _
(vii) If M is —(s+3%)-indecomposable, s>1, then M is —s-in-
decomposable.
(viti) If M has a cocore, then M is — co - indecomposable.

We end this section by showing that the above classes of indecompos-

able modules are distinct. _
Example 1.1. Let s be a positive integer. There is a radical squared zero

Artin algebra having an indecomposable module which is (s + %) - indecomposable
and —(s+3)-indecomposable but neither (s+ 1) -indecomposable nor —(s+1)-
indecomposable.

Proof. Consider the quiver Q (in the sense of [8], [9]) with 2s+4
vertices, numbered 1, ..., s+2, I, ..., (s+2), having exactly one arrow from
vertex i to vertex j' provided i # j (cf. [11], p. 376). For example, for s =1, Q
is of the form

| 2 3

Denote by R the associated tensor k-algebra for Q, where k is a fixed
commutative field. We know [6] that R is a hereditary Artin algebra with
radical square zero and there exists an isomorphism of the category of
R-modules and the category of representations of Q. Let us consider the
representation V of Q obtained by putting the same one -dimensional vector
k -space at each vertex and letting each morphism be the identity. Let M
be the R-module associated with the representation V and let P; (resp. P;))
be the projective R -module associated with the i-th (resp. i’-th) vertex. It is
not difficult to see that

s+2
M=} N,
i=1
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where N, is isomorphic to P;. Hence the N; are nonsuperfluous submodules
of M and it is easy to verify that each nonsuperfluous submodule of M
contains some N,;. But
N.nN;= @ P, fori#j.
t#i,j
s+2

Consequently,  N; =0 and we see that M satisfies the required conditions.

i=1
Example 1.2. Ler s be a positive integer. There is a radical squared zero
Artin alyebra having an indecomposable module which is s - indecomposable and
—s-indecomposable but neither (s+3%)-indecomposable nor —(s+3)-in-
decomposable.

Proof. Consider the quiver § which arises from the quiver Q by the
omission of the arrow from 1 to 2. For example, for s =1, Q is of the form

Let & be a commutative field. Let R be the associated k -algebra for S and let
L be the R-module associated with the representation W of S obtained by
putting the same one -dimensional vector k -space at each vertex and letting
each morphism be the identity. Further, let P, (resp. P)) be the projective R -
module associated with the i-th (resp. i’-th) vertex of S. We claim that L has
the required properties. First observe that

s+2
L= Z Li’
i=1
where L; is isomorphic to P;, and each nonsuperfluous submodule of L
contains some module L;. Observe also that P,nL, =0,i=1,...,5s+2, so
L, is nonessential in L. It is easy to see that every nonessential submodule of
L is contained in L,+L, or in some L;, i=3,...,s+2. Moreover,

LnLj= @ P, forj#1,2

1#1,2,j
and
LnL;= @ P, fori,j>2andi#j.
r#i,j
Hence
ﬂ Li = Os

i*2
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and if U,, ..., U;,, are nonsuperfluous submodules of L such that

s+1

Z U"=L,
i=1

then L, is contained in some U; and, consequently,

s+1

N U, #0.

i=,1

Thus L is s-indecomposable but not (s+3)-indecomposable. On the other
hand,
s+2

(Ly+Ly)~P,=0, (Li+Ly+ z L;=L,
i=3

and
Y Li#L foranyj=1,...,s+2,

iti

and we see that L is —s-indecomposable but not —(s+3)-indecomposable.

2. Rings of finite representation type. First, we fix some notation. Let R
be an Artin ring with radical r and let M be an R-module. We denote the
length of M by I(M), the projective cover by P(M), and the injective envelope
by E(M). The top of M, denoted by top M, is M rM. Further, we denote
the socle of M by soc M. If R is an Artin algebra, then there is a duality D
between left and right finitely generated R -modules defined as follows. If C
is the center of R and E is the C-injective envelope of top C, then D(X}
= Hom¢(X, E), X being either a left or right R-module [3].

ProposiTiION 2.1. Let R he a left Artin ring and let M be an R -module.
Assume that each indecomposable injective R -module has finite length. Then

() if M is 3-indecomposable, then

I(M) < max !I(E)! max 'I(P))?
(ii) if M is —3-indecomposable, 1hen
I(M) < max |I/(P)} max ‘I(E))?

where the maximum is 1aken over the indecomposable injective (resp. projective)
R -modules E (resp. P).

Proof. Assume that M is 3-indecomposable and let P(M)—f+ M be the
projective cover for M. Further, choose an indecomposable summand Q of
P(M) and put N =f(Q), S =soc N. Then there exists a map g: M — E(S)
such that the diagram

S ©“o Nc. M
n _—
l
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is commutative. Since N is nonsuperfluous in M, and S is essential in N, the
3 -indecomposability of M implies that the intersections of nonsuperfluous
submodules of M with S are nonzero. Consequently, the kernel of g is
superfluous in M and, by [10], Corollary 2.2 and Lemma 7.1, M and X
= ¢ (M) have isomorphic tops. Hence

I(M) < I(P(M)) < [(P(X)) < [(E(S)) max {I(P)}
< max {[(E)) max {I(P)) [(Q) < max {/(E)} max {I(P)}?

which proves (i).

Now assume that M is —3-indecomposable and let M <%, E(M) be the
injective envelope for M. Let L be an indecomposable summand of E(M)
and put V = pi(M), T =top V, where p denotes the canonical projection
E(M)— L. Then there exists a map f: P(T) — M such that the diagram

T e— V &M

f //
7
P(T)

is commutative. We claim that W = f(P(T)) is an essential submodule of M.
Indeed, since W +ker pi = M and ker pi is nonessential in M, the —3-
indecomposability of M implies that W is essential in M. Then

I(M) < I(E(M)) < [(E(W)) < [(P(T)) max {{(E)}

<
< max {I(P)} I(T) max {I(E)! < max [[(P)} max {I(E)}%.

Thus the proof of the proposition is complete.

We get the following consequences of this result:

COROLLARY 2.1. If every indecomposable injective module over a left Artin
ring has finite length and every indecomposable module of finite length is either
3 -indecomposable or —% -indecomposable, then the ring is of finite represen-
tation type.

Proof. By Proposition 2.1 there is a bound on the length of indecom-
posable modules of finite length. Thus the result follows from [1], The-
orem 3.1.

CoROLLARY 2.2. If R is an Artin algebra such that every indecomposable
module of finite length is either 3 -indecomposable or —3% -indecomposable, then
R is of finite representation type.

Proof. The result follows from Corollary 2.1 and from the fact that the
duality D preserves length, and if E is indecomposable left injective, then
D(E) is indecomposable right projective.
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COROLLARY 2.3. If every indecomposable module over a left Artin ring of
left pure semisimple type ([13], [14]) is either 3-indecomposable or —3 -
indecomposable, then the ring is of finite representation type.

3. Auslander - Reiten sequences. In this section we restrict our attention
to the study of $-indecomposable modules and —3-indecomposable mod-
ules over Artin algebras with radical square zero. Unless otherwise stated, R
will denote an Artin algebra and r its radical.

Recall that a nonsplit exact sequence of finitely generated R-modules
0—+ALB2%C—0is called an Auslander - Reiten sequence if A and C are
indecomposable and, given any morphism h: X — C which is not a splittable
epimorphism, there is some g: X — B such that pg =h (see [3]). In [3],
Proposition 4.3, the existence and uniqueness (up to isomorphism) of an
Auslander - Reiten sequence 0 - A — B — C — 0 are shown for a given inde-
composable finitely generated nonprojective R -module C or an indecompos-
able finitely generated noninjective R-module A.

We begin with some general observations. One may easily check that if
M is a finitely generated R -module, then M is 3 -indecomposable if and only
if D(M) is a —3-indecomposable R°®-module. Moreover, it is clear that
modules with simple tops and modules with simple socles are 3-
indecomposable and —3 -indecomposable.

LemMma 3.1. Let R be a left Artin ring. Then every indecomposable R -
module of length at most 4 is % -indecomposable and —3 -indecomposable.

Proof. Let M be an indecomposable R -module and let /(M) < 4. By
the above remark it suffices to prove the required properties for M with
nonsimple top and socle. In this case, | (top M) =2 and [ (soc M) = 2. Then,
since M is indecomposable, nonsuperfluous submodules of M are nonsimple
and, consequently, M is 3-indecomposable. On the other hand, it is clear
that nonessential submodules of M have length at most 2 and from the
indecomposability of M we conclude its —3 -indecomposability.

LemMA 3.2. Let R be a left Artin ring and let
0-MLE ®E, 550
be a nonsplit exact sequence in mod R with a simple module S. Suppose that
E, and E, have nonsimple tops. Then M is not %-indecomposable.

Proof. Observe that the maps p;: E; — S, i =1, 2, induced by p, are
proper epimorphisms. Then V; = ker p; is a maximal submodule of E;. Since
E; has a nonsimple top. there exists a maximal submodule B; of E; different
from V.. Put

Ny =j7'(n@0), N, =j1(0@V,),

Ly=j'(Bi®E,), L,=j '(E,®B,).
It is clear that N,, N,, L,, and L, are proper submodules of M. But V,+ B,
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= E,;, the modules ¥, ®0 and 0@V, are contained in the image of j, so
L;+N;,= M for i =1, 2. Consequently, N; and N, are nonsuperfluous sub-
modules of M. Since NynN, =0, M is not 3 -indecomposable.

LrMMA 3.3. Ler R he a left Artin ring and let
0-MLE @E,PE, 550

be a nonsplit exact sequence in mod R with a simple module S. Then M is not
—3 -indecomposable. .

Proof. Since p is not splittable, the maps p;: E; — S,i =1, 2, 3, induced
by p, are proper epimorphisms. Let

L=j-1(E1@Ez@0), L'=j-l(0@0@E3),
N=j '(0®E,DE;), N =j'(E, D0DO).

By the above remark, L, L', N, N' are proper submodules of M and, clearly,
L~L'=0and N~ N =0. Hence L and N are nonessential in M. Since the
p; are epimorphisms, L+ N =M. Consequently, M is not —3-in-
decomposable.

The following theorem plays an important role in the classification of
radical squared zero Artin algebras such that indecomposable modules are
either 3-indecomposable or —3-indecomposable.

TueoreM 3.1. Let R be a radical squared zero Artin alyebra and let

0-M~LE%LS—0
be an Auslander - Reiten sequence in mod R with a simple module S. Suppose
that

is a representation of E as a direct sum of indecomposable modules. Then

(i) M is 3 -indecomposable if and only if one of the following conditions is
satisfied :

(h n=3 and E,, E,, Ey have simple 1ops,

(2) n=2 and either E, or E, has a simple ‘op,

B)n=1:

(i M is =3-indecomposable if and only if n < 2.

Proof. From Proposition 5.3 (a) in [3] and the result dual to Theorem
5.5 and Proposition 5.7 in [3] it follows that E = E(P(S)) (see also [10],
Lemma 10.2). Consequently, E,,..., E, are indecomposable injective
modules.

(ir If VM is 3-indecomposable, then by Lemma 3.2 one of the conditions
(1)-(3) holds. Therefore, for (i), it remains to show that M is 3-in-
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decomposable if one of the conditions (1)-(3) is satisfied. Assume that (1) is
satisfied. Since E,, E,, E; have simple tops and socles, /(M) =5. Thus, for
our aim, it is enough to prove that [/(N) >3 for any nonsuperfluous
submodule N of M. Suppose that there exists a nonsuperfluous submodule X
of M of length less than or equal to 2. Since M is indecomposable, X is not
semisimple, so X has a simple socle and length 2. On the other hand, the
modules M and E have the same socle and we conclude that X is injective.
But this contradicts the indecomposability of M and we are done. Now
suppose that (2) holds and assume that E; has a simple top. If E, and E, are
isomorphic, then /(M)=3 and M is 3-indecomposable by Lemma 3.1.
Assume that E, is not isomorphic to E, and put S; =soc E; and T, =~ !(S)),
i =1, 2. For the $-indecomposability of M it suflices to show that every
nonsuperfluous submodule of M contains T,. Let N be a nonsuperfluous
submodule of M which contains no 7,. Then N contains T; and, since
semisimple submodules of indecomposable modules are not nonsuperfluous,
I(N) > 2. But I(E|) =2, and then N is not contained in j~!(E, ®0). Hence
N contains T, and we get a contradiction with our assumption. If n =1,
then M has a simple socle and is 3-indecomposable.

(ii) If M is —3-indecomposable, then n <2 by Lemma 3.3. If n =1,
then M is of course —3-indecomposable. Assume n = 2. We will use the
duality D. Suppose, for the moment, that M is not —3-indecomposable.
Then D(M) is an indecomposable R°-module which is not 3-in-
decomposable, and so there exist nonsuperfluous submodules X and Y of
D (M) such that X~ Y = 0. Since top D(M) = D(soc M), we get I{top D(M))
‘= 2. Further, from the indecomposability of D(M) it follows that X and Y
are not semisimple. Hence

I(X)=I(soc X)+1 and [(Y)=I(soc Y)+1.

On the other hand, XY = 0, so there exists a semisimple submodule T of
D (M) such that

soc D(M) = (soc X)@P(soc V)P T.
Then TA(XPY)=0 and we obtain

(X ®Y®T)=2+I(soc X)+I(soc Y)+I(T) = 2+I(soc D(M)) = [(D(M)).
Consequently, D(M)=X®Y®T, and this contradicts the indecomposabi-
lity of M. The proof of the theorem is completed.

Applying the duality D we obtain the following result from The-
orem 3.1:

TuroreM 3.2. Let R be a radical squarel zero Artin algebra and let

0-S—-P-M=0
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be an Auslander - Reiten sequence in mod R with a simple module S. Suppose
that

P= @P,
i=1

is a representation of P as a direct sum of indecomposable modules. Then

(i) M is %-indecomposable if and only if n<2;

(i) M is —3-indecomposable if and only if one of the following conditions
is satisfied :

(1) n=3 and P,, P,, P; have simple socles,

(2) n=2 and either P, or P, has a simple socle,

3) n=1.

We get the following consequence of Theorems 3.1 and 3.2:

CoRrOLLARY 3.1. Let R be an Artin algebra with radical square zero.
Assume that one of the following conditions is satisfied:

(i) I(soc E(P)) =3 and I(top E(P)) = 4 for some indecomposable projec-
tive R-module P;

(ii) !(top P(E)) = 3 and I(soc P(E)) = 4 for some indecomposable injective
R -module E.

Then there is a finitely generated indecomposable R -module of length
greater than or equal to 6 which is neither 3-indecomposable nor —3-
indecomposable.

4. Rings with 3-indecomposable modules. In this section we give a
classification of radical squared zero Artin algebras such that every indecom-
posable module is either 3-indecomposable or —3 -indecomposable.

Throughout this section R will denote a radical squared zero Artin
algebra and r its radical. It is well known how to analyze the R-modules:
one constructs the hereditary Artin algebra

K= (R:r R(;r)

and two functors %, f: mod R - mod R’ such that
a(M)=(M/rM)@rM and B(M)=(M/soc M) Psoc M

for any R-module M. Then the finitely generated R’-modules X which are
isomorphic to a(M) for some M in mod R are the ones with no simple
projective summands. Similarly, the objects in mod R’ which are isomorphic
to (M) for some M in mod R are the finitely generated R’-modules with
no simple injective summands. For details, see [1], [4], and [10]. It is not
difficult to see that x and f are isomorphic on the full subcategory of mod R
whose objects have no simple summands. Consequently, 2 induces a one-to-
one correspondence between isomorphism classes of indecomposable non-
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simple R-modules and isomorphism classes of indecomposable nonsimple
R’-modules such that projective modules correspond to projective modules
and injective modules correspond to injective modules (see [10], Lem-
ma 15.6). Of course, x and B preserve the length of modules.

In order to state the main theorem of this section, we need the notion of
the separated quiver ([6], [9], [10]. [12]) of a radical squared zero Artin
algebra. We use the notation of [10], Section 14.

Let P,, ..., P, be a full set of nonisomorphic indecomposable projective
left R-modules. Then P, ..., P¥, where P¥ = Hom (P;, R), constitute a full
set of nonisomorphic projective right R-modules. Let g;; be the number of
times the simple module P;/rP; occurs as a composition factor of the
semisimple module rP; and let a¥ be the number of times P¥/P} r occurs as a
composition factor of P¥r. The left quiver Q(R) of R consists of the n points
1, ..., n together with a;; arrows from the point i to the point j. The right
quiver Q*(R) of R is the quiver with n points 1, ..., n and a¥ arrows from i
to j. Then the quiver I'(R) of R is the ordered pair I'(R) = (Q(R), Q*(R)).
Further, let S,, ..., S, be the full set of nonisomorphic simple R -modules
such that S; = top P; and put E; = E(S;). Then from the proof of Lemma 9.7
in [10] we have P} = D(E;) and, consequently, a¥ is the number of times rE;
occurs as a composition factor of E,/rE;. The definition of the quiver of R is
left - right symmetric in the sense that if we think of Q*(R) as of the right
quiver of R, then, with the obvious meaning, Q**(R) = Q(R). Put Q(R®)
= Q*(R) and I'(R®®) = (Q*(R), Q(R)). The separated quiver I''(R) of R is the
quiver of R

Our main aim in this section is to prove the following

THEOREM 4.1. If R is a radical squared zero Artin algebra, then the
Jfollowing statements are equivalent : _

(i) Every indecomposable module of finite length is either 3-in-
decomposable or —3-indecomposable.

(ii) Either every indecomposable module of finite length is 3-in-
decomposable or else every indecomposable module of finite length is —3-
indecomposable.

(ii1) Every indecomposable module has length at most 5.

(iv) The separated quiver of R is a disjoint union of quivers of the
following types:

A 1, 1,

Ay: 12,152,

Ay: 1253, 1523,

A}: 1523, 1253,

Ay 12534, 15234,

As: 1253455 1523545,
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A¥: 1923545, 125345,
B,: 1£2,1-2,

B%¥: 1-2,1£2,

By: 1253, 1523,

BY: 1523,1£2-3,

Cy: 1253, 1323,

C3: 1323, 123,

3 3

1 !
Dy: 1254 1524,

3 3

l 1

Df: 1524, 1«24,

G,: 1 E 2, 1 -2,

G¥: 12, 1E2.

Moreover, if R is indecomposable and hereditary, then any of the state-
ment (i)-(iv) is equivalent to

(v) R has at most 15 nonisomorphic indecomposable modules.

The theorem is a generalization of Theorem 15.1 in [10]. The letters A4,
B, C, D, and G indicate the Dynkin diagrams (see [6]-[8]) from which the
designated separated quivers are derived. We should mention that in the
nonhereditary case it is not possible to prescribe a bound on the number of
nonisomorphic indecomposable modules as it is done in (v) (see [10], p. 105).

In order to prove the theorem we need the following lemma which
reduces the study of 3-indecomposable R-modules to R’-modules:

LEMMA 4.1. Let R be a radical squared zero Artin algebra, R’ the
hereditary Artin algebra associated with R, and o: mod R — mod R’ the
Junctor defined previously. Moreover, let X be a finitely generated indecompos-
able nonsimple R -module and let M = a(X). Then X is 3 -indecomposable if
and only if M is 3-indecomposable.

Proof. First observe that every nonsuperfluous submodule of X (resp.
M) contains a nonsuperfluous submodule of X (resp. M) with a simple top,
called a basic submodule of X (resp. M) (cf. [10]). By Lemma 15.5 in [10], the
functor a gives a one-to-one correspondence between basic submodules of X
and basic submodules of M. Assume that X is 3-indecomposable and let
N and P be basic submodules of M. By the above remark, N = x(Y) and P
= a(Z) for some basic submodules Y and Z of X, and there is a simple R -
module S such that S < YnZ. But then T=0®S is a simple R’-module
contained in NnP, so M is }-indecomposable. Conversely, let M be 3-
indecomposable and let Y and Z be basic submodules of X. Then x2(Y) and
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2(Z) are basic submodules of M, so there is a simple R’-module T such that
T c 2(Y)na(Z). Since a(Y) and x(Z) have simple tops, T=0PS for a
simple R-module S, and S « YNnZ. Hence X is 3-indecomposable and the
lemma is proved.

Proof of Theorem 4.1. First we prove that (iv) implies (ii) and (iii). By
duality, it is enough to prove that if the quiver of a radical squared Zzero
hereditary Artin algebra R is one of the quivers A,, 4,, A5, A%, A,, As, B,,
B%, B,, C;, D,, or G,, then every indecomposable finitely generated R -
module has length at most 4 or has length 5 and satisfies (i) of Theorem 3.1
or (ii) of Theorem 3.2. Using Theorems 14.1 and 14.5 from [10] we get the
following table for the number of nonisomorphic indecomposable R -
modules in every case:

A, A, Ay A} A, A, B} B, B, C; D, G,

1 3 6 6 10 15 4 4 9 9 12 6

We apply the same numeration of vertices of the above quivers as in the
theorem and put S; =top P; and E; = E(S;). It is not difficult to see that if

F(R) = A,, Az, A3, Ag‘, Bz, or Bg,

then every indecomposable R-module has length at most 4. If I'(R) = A,,
then the modules S,, S,, Si3, S;, P,, P,, E,, E,, P,/S, of length at most 3
and the module M of length 4, given by the Auslander-Reiten sequence

O*M-’EIG')E3—’S2“'O,

form a full list of nonisomorphic indecomposable R -modules.

Now suppose that I'(R) = A5. In this case the list of nonisomorphic
indecomposable R -modules is the following: S,, S,, Si, S4, Ss, P, P,, E,,
E,, Es, P,/S,, P,/Ss, My, M,, N, where M,, M,, and N are given by the
Auslander - Reiten sequences

O"’Ml _’El @E3 —"Sz —’O,
0‘-’M2—'E3®E5 —’S4—’O,
0"S3"’P2(’BP4—’N-'O.

Observe that [(M,)=I1(M,;)=4 and I(N)=S5. Then, since the first 12
indecomposable modules on our list have length at most 3 and, by The-
orem 3.2, N is 3-indecomposable, the required conditions are satisfied.

Assume that I'(R) = B;. Then we have 8 nonisomorphic indecompos-
able modules S,, S,, S5, P,, E,, E;, P,/S,, P,/S; of length at most 4 and
one indecomposable module M of length 5 given by the Auslander - Reiten
sequence

0-M—-E @E @E,—>S,-0.
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Since E; and E; have simple tops, M is 3-indecomposable by Theorem 3.1.

Let I'(R) = C;. In this case we have 7 nonisomorphic indecomposable
modules S,, S,, S3, P,, E,, Ey, P,/S; of length at most 3, and 2 indecom-
posable modules M and N of length 4 and .5, respectively, given by the
Auslander - Reiten sequences

0O-M-E @PE;—>S,-0,
0-S,-P,®P,>N-0.

By Theorem 3.2, N is $-indecomposable, and the required conditions hold.

Let I'(R) = D,. Then we have 11 nonisomorphic indecomposable mod-
ules S,, S,, S5, S4, P,, E,, E;, E,, P,/S,, P,/S;, P,/S, of length at most 4
and one indecomposable module M of length 5 given by the Auslander -
Reiter sequence

0"’M""E1(‘BE3@E4—’SZ—*O.

Since E,, E,, E, have simple tops, M is 3-indecomposable by The-
orem 3.1 (i).

Finally, let I'(R) = G,. Then we have 5 nonisomorphic indecomposable
modules S,, S,, P,, E,, P,/S, of length at most 4 and one indecomposable
module M of length 5 given by the Auslander - Reiten sequence

0O-M->E @E  @DE, »S,—0.

But /(E,) =2 and, by Theorem 3.1, M is 3-indecomposable.

Now we prove simultaneously the implications (i) = (iv) and (iii) = (iv).
By Corollary 2.2, Lemma 3.2, [1] (Theorem 3.1), [10] (Theorems 14.1 and
14.5), and duality D, for our aim it is enough to show that if one of the
connected components of I'(R’) is of the type

Ay 1253455 6—...—-n 1-52<3-4<5-6—...—n,
nz=6,
B, 1£2-53«4—- ... —n, 152354« ... —n, n>4,
Chi1«2-53«4— ... —-n132«3-54— ... —n, n=>4,
3 3
T !
D, 1«2-54«5—- ... -n1-52«4-55— ... —-n,n2=S5,
4 4
| T
E,: 1«2-53«5—...-n1-52«3-55—-...-n,n=6,7,8,

F,: 12334, 15234,
then there is a finitely generated indecomposable R’-module of length
greater than or equal to 6 which is neither 3-indecomposable nor —3-
indecomposable. We may assume that I'(R’) is connected.



MODULES OVER ARTIN ALGEBRAS 31

First assume that I'(R’) = A,, where n > 6. Let us consider the following
exact sequence in mod R’:

0—'S3®SSLP2®P4®P6!"M—’O’

where f is given by the matrix
‘1 0
(1 )
01

1 denotes the canonical injections, and g is the cokernel of f. It is not difficult
to verify that M is indecomposable. Observe that g(P,) and g(P,) are
nonsuperfluous submodules of M and g(P,)ng(Pg) = 0. On the other hand,
g(P,) and g(P,@® P¢) are nonessential submodules of M and g(P,)+
+g(P,® Pg) = M. Thus M satisfies the required conditions.

Now let I'(R') =C,, n=> 4. From Propositions 1.9 and 2.6 in [7] we
know that there is an indecomposable finitely generated R’-module M with

topM=S, DS, PS,, socM=SDS;DS; DmS,,

where m=0 for n=4 and m=1 for n>5. Then the minimal projective
presentation for M is of the form

0—>Sl@S3LP2@P2@P4—QvM—>O,

¢ ¢ a\ (0 c\ . (0
/= (” d)’ w0 (3)%(0)} (6)*(o)
0 e

Assume a #0, ¢ # 0, and let g =(g,, g,, g5). Since soc M contains two
copies of Sj, either g, (P;)ng(P,) or g,(P;)ng(P,) is zero, and then M is
not 3-indecomposable. By [7], Propositions 2.1, 2.4, End (P,) and End (S,)
are division rings having the same finite dimension over a central subfield K,
so the restriction map End (P;) — End (S;) is an isomorphism. Hence the
map

where

(f,) Sy P,®P,
has an extension to h: P, - P, ® P,. Then the socle of N = gh(P,)+g;(P,)
has only one copy of Sj, so N is nonessential in M. Moreover, g,(P;)+ N
= M, g,(P2)ng31(S3) = 0 and, consequently, M is not —3-indecomposable.

For the analysis of the remaining cases we use Corollary 3.1. If I'(R’) is
one of the quivers B, (n=>4), D, (n>5), or F,, then

I(soc E(P;))=3 and I(top E(P,)) =4.

3 — Colloquium Mathematicum XLVIIIL.1
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If r(RY=E, (n=6,7,8), then
I(top P(E)) =3 and  I(soc P(Ey) =4

and we are done.

Since the implication (ii) =>(i) is obvious, the equivalence of (i)-(iv) is
proved. If R is indecomposable and hereditary, then the equivalence of (iv)
and (v) is a consequence of Theorems 14.1, 14.5, and the table on page 90 in
[10]. The proof of the theorem is complete.

We state some consequences of Theorem 4.1.

THroOREM 4.2. The following properties of a radical squared zero Artin
algebra are equivalent :

(i) Every indecomposable module of finite length is % -indecomposable.

(i1 The separated quiver of R is a disjoint union of quivers (specified as in
Theorem 4.1). of the types A, A,, A5, A}, A,, As, B,, B%, B;, C5, D,,
and G,. .o

" Proof. The implication, (n):»(l) follows from the proof of (iv) = (ii) of

Theorem 4.1. For (i) = (ii), by Theorem 4.1 and the lemma dual to Lemma
4.1, it suffices to show that if a connected component of I'(R’) is equal to one
of the quivers A%, B}, C3, D}, or G%, then there is a finitely ‘generated
indecomposable R’ module Whnch is not- 3 - indecomposable. Without loss of
generality .we may assume that I'(R’) is connected. As in- the, proof of
Theorem 4.1 we use the notation S; —top P, and E;, = E(S)).

If T'(R') = A%, then we have the Auslander - Reiten sequence

0—’M—’E2®E4—’S3 —’0

Since E. and E, have nonsimple tops, M is- not 3 -indecomposable by
Theorem 3.1 (i) (2). . )
If I'(R') = B%, then we have the Auslander-Reiten sequence

0-S,-P,®P,OP, - M -0,

and, by Theorem 3.2 (i),.M is ;nm"%-indecomposable.
Let I'(R’) = C%. Ther we have the Auslander - Reiten sequence

0-M—-E,®E,—S, -0,

where top E, = S, @83, and from Theorem 3.1 (i) (2) we conclude that M is

not 3 -indecomposable.
Assume T (R)=D%. In this case we have the Auslander-Reiten

sequence
0—S,—~P,®P,®P, - M0,

and from Theorem 3.2 (i) we infer that M is not 3-indecomposable.
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Finally, suppose that I'(R’) = G%. Then we have the Auslander - Reiten
sequence

and, by Theorem 3.2 (i), M is not 3 -indecomposable. Thus the theorem is
proved. . ,

We observe that Theorem 4.2 leads immediately, by the duality D, 10 a
classification of radical squared zero Artin algebras such that every indecom-
posable module of finite length is —3 -indecomposable.

From Theorems 4.1 and 4.2, and [10] (Theorems 15.1 and 15.3) we get

CoroLLARrY 4.1. If R is a radical squared zero Artin algebra, then the
following statements are equivalent :

(i) Every indecomposable module is 3-indecomposable and —3-in-
decomposable. ‘

(i) Every indecomposable module has a core and a cocore.

(it)) The separated quiver of R is a disjoint union of quivers of the types
A,, A,, A;, A}, A,, B,, and B%.

Concerning this result we should mention that, in general, there are
modules which are simultaneously 3-indecomposable and —3-inde-
composable but having neither a core nor a cocore (see Example 1.1).
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