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Let G be an algebraic reductive group acting on a smooth projective
variety X. It follows from geometric invariant theory of D. Mumford that if
for some ample G-linearized sheaf L over X and a maximal torus T < G the
sets of stable and semi-stable points with respect to the induced (by restric-
tion) action of T on X coincide and are equal to U < X, then U is N(T)-
invariant subset such that the geometric quotient U — U/T exists, where U/T is
Chapter 1, Section 4). Moreover, in this case the set of all stable points of X
for the action of G on X (with respect to L) is equal to () gU ([6], Theorem

9eG

2.1), the geometric quotient

NgU— N gU/G
g9eG 9eG

exists and () gU/G is a projective algebraic variety.
geG
The above results may lead to the following
CoNJECTURE. Let G and X be as above. Let U — X be an open N(T)-
invariant subset such that the geometric quotient U — U/T exists, where U/T is

a complete algebraic variety. Then () gU is an open G-invariant subset of X,
geG
the geometric quotient

NgU— NgU/G
geG geG

exists, where () gU/G is a complete algebraic space.
9<G

In this paper we show that the conjecture is true if G = SL(2) (and the
ground field is of characteristic 0).

We are going to use terminology introduced in [1]-[3]. Now we quote
the definitions needed in the sequel and fix notation.

For a given action of a one-dimensional torus T = K* on a smooth
complete variety X we denote by X7 the fixed point subvariety of the action.
Moreover, X, U ... U X, = X7 is the decomposition into irreducible compo-
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nents and, for i=1,...,r,

X = {xeX; limtxeX;}, X ={xeX; limtxeX,}.

t—0 t—wo

We denote by x; the morphism X;* — X; defined by

%;(x) =limotx for any xe X;".
(-

We say that X; is less than X; and write X; < X if there exists a finite
sequence of points x;, ..., X,€ X — X7 such that

(a) imtx, € X;,

(b) ‘l:r(rjl tx,€ X;,

(c) ;'c;rjk =1,...,m—1, limtx, and limtx,,, belong to the same irre-
ducible component of XT. e 0

We say that X; and X; are not comparable if neither X; < X; nor
X; <X;. '

By a section of {X,, ..., X,} we mean a division of the set into two non-
empty subsets A~ and A" satisfying the following condition:

if X;eA™ and X; <X;, then X;eA".
Every section (4~, A*) determines an open and T-invariant subset U of X
defined in the following way:

U=X-(U X;u U X})
XieA™

.cAt
jeA Xjed

The set U is called the sectional set determined by the section (47, A*).
By a semi-section of {X,, ..., X,} we mean a division of {X,, ..., X,

into three subsets A~, 4% A™ satisfying the following condition:
A"#Q# A" and if X;eA” UA® X; <X, then X;eA".

Any semi-section (A%, A% A~) determines an open T-invariant subset

U=X-(U X;u U XJ)
XjeA"'

XjGA_

It has been proved (see [3]) that if U is a subset determined by a semi-
section, then there exists a categorical quotient ¢: U — U/T, where U/T is a
complete algebraic variety and ¢ is an affine morphism. Moreover, if U is a
sectional set, then ¢: U — U/T is a geometric quotient.

Let X be a smooth complete algebraic variety with a non-trivial action
of SL(2), all defined over an algebraically closed field K. Let T < SL(2) be a
fixed one-dimensional subtorus and let N(7T) be its normalizer in SL(2).
Denote by B, and B_ two Borel subgroups of SL(2) containing 7. We
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assume that

where

0 1
* = .
reK*, Al1€eK, =t [_] OJ

For any Y < X and H < SL(2),
Y# = {yeY; for any heH, hy = y).

The Weyl group W = N(T)/T acts on the set {X;;i=1, ..., r} by involution
denoted by w.

THEOREM 1. Let U < X be an N (T)-invariant open subset such that the
geometric quotient U — U/T exists and U/T is projective. Then X is projective
and there exists an ample SL(2)-linearized linear vector bundle L on X such
that

X(L)=X*L)= () gU.

geSL(2)

Hence () gU is open and SL(2)-invariant, the geometric quotient
gsSL(2)

N gU— N gU/SL(2)

geSL(2) geSL2)

exists and () gU/SL(2) is a projective normal variety.
geSL(2)

Proof. Since the geometric quotient U — U/T exists and U/T is normal
and projective, the geometric quotient U — U/N(T) also exists and U/N(T)
is projective. Hence there exists an N (T)-linearized linear bundle L on X
such that U is the set of stable points with respect to L, L is very ample on
U and there exist sections s,...., s, I'(X, L) which separate points and
tangent vectors in U. In fact, it follows from [8] that we may apply [6],
Lemma 0.5 and then Proposition 0.7, to conclude that the quoticnt mor-
phism U — U/T is affine. Therefore, the morphism U — U/N(T) is also affine
and we may use [6], 1.12, 1.13 and Section 4 (2).

Now, since SL(2) has no non-trivial character, we can assume that L is
SL (2)-linearized ([6], 1.5) (we replace L by L’" for some positive integer n, if
necessary). It follows from the proof of 1.4 in [6] that the T-linearization of L



232 A. BIALYNICKI-BIRULA AND J. SWIECICKA

induced by the SL(2)-linearization coincides with the T-linearization obtained
(by restricting) from the N (T)-linearization given previously.

It follows from the above properties of L that L determines an SL(2)-
equivariant birational map

Y: X — P,

where k is a positive integer and P* is a k-dimensional projective space.
Moreover, Y|U is an isomorphism onto y (U) = P*. We know (see [3]) that
U is a sectional set; hence X —U = X' u X”, where X’ and X" are connected
disjoint and closed subsets of X. Since, for any xe X, SL(2)x is N(T)-
invariant and 7(X') = X",

SLQxNnX'#@ if and only if SL(2QxnX" #O.

Since, for any xe X, the orbit SL(2)x is connected,

SLQ)xnU # Q;
thus
U gU=X.
geSL(2)
Since ¢ is defined on U and is SL(2)-equivariant, ¥ is defined on
U gU=X.
geSL(2)

If, for x,, x,eX, Y(x,) =y (x,), then, for any geSL(2), ¥ (gx,) = ¥ (gx,).
Since SL(2) x, nU and SL(2) x, n U are non-empty open subsets of SL(2) x,
and SL(2)x,, respectively, there exists goeSL(2) such that g, x;, goxo€ U.
But ¢ |U is injective, hence gy x, = gox, and x, = x,. Moreover, for any
x €U the differential dy, is injective, so it is injective for any x € X. Thus y is
an embedding and L is very ample on X.

Consider X*(L) and X*(L) with respect to L with given SL(2)-
linearization. By [6], 2.1,

X*(L)=XxL)= N gU.
gsSL(2)

Hence () gU is open and the geometric quotient
gsSL(2)

N gU— () gU/SL(2)

geSL(2) geSL(2)

exists and () gU/SL(2) is projective.
geSL(2)
In the sequel we shall assume that the ground field K is of character-

istic 0. i
THEOREM 2. Suppose that X is projective and let U — X be an N(T)-
invariant open subset of X such that the geometric quotient U — U/T exists
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and U/T is a complete algebraic variety. Then the geometric quotient

 gU— () gU/SL(2)
eeSLD) geSLID)

exists and (\ gU/SL(2) is a complete normal algebraic space.
¢eSL2) :
Proof. The existence of this quotient in the category of algebraic spaces

follows from [2], Theorem 4.1. (Notice that the assumption stated in Theorem
4.1 of [2] that the stabilizer groups are finite was not used in the proof of
the implication (b) = (a) presented in the paper.) The proof of the complete-
ness of () gU/SL(2) is based on the following lemmas:

geSL(2)
Lemma 1. Let X be complete (not necessarily projective). Let X; be a
connected component of XT. Then X is B,-invariant, X; —(B+
U/"(X *)) is open in X; and the geometric quotient

X} —(B+ X; 0% 1(X]1) = X} — (B, X;ux] \(X; 4B,
exists. Moreover, the morphism

X} —(B+ X;ux; Y(X;))/Bs = X,— X *

induced by »; is proper. In particular, if Xf* =@, then (X] —B, X;)/B, is
complete.

Proof. It follows from [7] that X is B,-invariant and the canonical
retraction x;: X;° — X is B, -equivariant (wnth respect to the trivial action of B,

on X)) Hence if X;—(B.: X; u;f“(XJ ))J/B. exists, then x; induces
a morphism

X} —((Bs X;0%; '(X;)By — X;— X *
Moreover, for any x,€ X; there exists a neighbourhood U of x, in X such
that
x; "(U) =~ U xK4,
where d is an integer (see [8] and [l], Corollary 4.1) and there exists an
SL(2)-equivariant embedding
v SL(Z)x‘,“(U)—* )

(for some integer m). In fact, since X is smooth, there is an open SL(2)-
invariant quasi-projective neighbourhood U, of x, (see [8]). It follows from
[4] or [6], Corollary 1.6, that U, can be SL(2)-equivariantly embedded into
a projective space P™. Since, for any xex; ' (U; n X)),

Tx(U;nX)#®
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and U, is open T-invariant, we infer that
xj—l(U, ij) c Ul'

Therefore SL(2)x; '(Uy nX;)) cU,. Taking U=U; nX; we obtain the
desired result. This allows us to reduce the proof of the lemma to the case
where X = P™.

In fact, it follows from the validity of the lemma for X = P™ and from
the above consrderatrons that if X satisfies the assumptions of the lemma,
then X;— -X5* ;7 can be covered by a family of open subsets U; such that, for
any i, U’ —B, U, is open in X; and the geometric quotient

U‘+ —B+ U e U'+ -B+ U,'/B...

exists and the morphism U;" —B, U;/B, — U, induced by x; is proper (and
hence separated) Hence X/ — (B, X;ux; l(X, )) is open in X; and the
geometric quotient

Xf —(By X0} H(X[") = X —(B+ X; 0 (X]))B,

exists. where X; —(B, X jux,-"(Xf+))/B+ is an algebraic prevariety and the
morphism

X} —(By X;ux; " (X H)/B, > X;,— X2+

induced by x; is proper (and hence separated). Now it suffices to show that
-(B+ X; ux"(X *)Y/B. is a variety. This follows from the facts that X;
—X and the described above morphism

X} —(B, X;uxj  (X;")/B, = X;— X *

are separated. _

Therefore, in the rest of the proof of the lemma we may assume that X
= P™.

Any action of SL(2) on P™ can be lifted to a linear representation of
SL(2) in the linear space A™*!. On the other hand, any linear representation

of SL(2) in A™*! is a direct sum @ F', where F' is the space of forms of
i=1

degree d; in two variables x, y, with the action of SL(2) induced by the
natural representation of SL(2) on linear forms. Any point x,€ X; lifts to a

n
line generated by a non-zero vector X, € @ F' with zero coefficient at each
i=1

monomial x* y" e F' such that s;—1; # s(j), where s(j) is an integer determmed
uniquely by the component X;. Moreover, xoe X;— X 7+ if and only if X,
depends on v, ie., if and only if X, is not a sum of forms of degree s(j).

Let ue(Xj—X;'*)“. Then for any lifting & of u in A™*' the component
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of i in F' is of the form
(*) Ao X" TNy g DLyl g xTTSUI T

where r 20, 2r+s(j) =d; and a,, ..., a,eK.

Let xoe X;—X;*. Then it follows from the above that X, has a non-
zero component in F' for some i, with d; = 2r+s(j), where r > 0. We may
assume that i = 1. Let V be the open subset of X ,-—Xf * composed of all
points which have lifts in A™*! with non-zero component in F!. Then any

ueV* has a unique lifting te A™*! with its component in F' of the form
(**’ xr+s(.i)yr-'_a1 xr+s(j)+1yr-l+ +a,x’+"“j’+'.

where r >0, 2r+s(j) =d, and ay, ..., a,eK.

Let
1 4
G, = {[O IJ}’ where 1€K.

The G,-orbit of u is composed of vectors in A™*! with component in F!
equal to

XDy g (HxTOTL ol g () x0T

where ay(4), ..., a,(4) are polynomial functions of 4 with coefficients in K
and a,(4) = a; + 4. Hence for exactly one Ae K (namely, for A = —a,) the
coefficient at x"**0*1 yr=1 in the component is equal to zero. It follows that
the geometric quotient

0. VT 2 VY/G,

exists with V*/G, being the subset of A™*! composed of all points v
satisfying the following conditions:

(i) for i # 1 the component of v in F' is of the form (x):

(ii) the component of v in F! is of the form (x*) with a, = 0.

The action of Ton V7 induces an action of Ton V*/G,. The action can
be described as follows: for ve V*/G, and teT, the value of the map
corresponding to ¢ at ¢ is equal to the product r*Y times the value of the
linear transformation corresponding to t at v in the representation space
A™*'. Then one can check that the geometric quotient

V' Ga= (VG = (V' /G, —(V*/G))T

exists. Moreover, ¢, '(V*/G,—(V*/G)T)=V*—B, V (hence V*—B, V is
open in X;) and x;|V*: V* — Vinduces a projective map

(V+/Ga—(V+/Ga)T)/T -V

with weighted projective spaces as fibres.
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The composition of geometric quotients
(V* =B, V) >V =B, V/G, = V*/G,~(V*/G,)"
=(V*/G,~(V*[G)YT
is the geometric quotient
(V*-B.V)—>(V*-B, V)B,

and the map V* —B, V/B, — V induced by x; is projective.
It follows from the above that the geometric quotient

X} —(B. X;ux; {(X[*) = X[ —(B. X;uxj '(X5))B,
exists and the map

X} =(B+ X; 0% (X5 *VBL — X, X} *

induced by x; is proper. This completes the proof of the lemma.

We shall now consider the following situation:

Let U,, U, = X be two different N(T)-invariant sectional sets defined
by sections (A;, A7) and (A7, A;), respectively. We say that U, is an
elementary transform of U, if there exists a minimal element X; in A] such
that

A7 = (A7 U w(Xip)})— X}
It follows that in this case w(X;,) is a maximal element in Ay,
A7 =(A4, U X)) = w(X;)!
and X;  is not comparable with w(X; ). Therefore Xfo“ =@. In fact, let

xoeXf:)“. Then the orbit SL(2)x, contains a dense T-orbit. Since SL(2)x,
contains both x, and 7(x,), we infer that X; and w(X; ) are comparable, a

contradiction.

LEMMA 2. Let U, and U, be two N (T)-invariant sectional sets in X. If
U, # U,. then there exists a chain of N(T)-invariant sectional sets V,
=U,,V,, ..., u=U, in X such that V,,, is an ¢lementary transform of V, for
i=1,..., k-1

Proof. Let U, by determined by the section (4;, A;). For any N(T)-
invariant sectional set V determined by (4™, A*), let s(V, U,) be the number
#(A* —Af) (notice that since the sections are N(T)-invariant, #A™*
= #A{ =r/2). Suppose that the set Z of N(T)-invariant sectional sets U,,
which cannot be obtained be a sequence of elementary transformations
starting from U,, is not empty. Choose U,eZ for which s(U,, U,) is
minimal. Let U, be given by the section (47, A5). There exists an element
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X;,€ A3 — A which is minimal in A3 . It follows that
w(X;)eA; —A] and X; €43 NA7;

in particular, X,  is not comparable with w(X; ). Hence we can define a new
section (A~, A™), where

A* = (A3 VWX = (X,  A” =w(4*).

Let W be the sectional set corresponding to (4=, A*). Then W is an
N(T)-invariant sectional set and W is an elementary transform of U,. Since
s(W, U,) <s(U,, U,), there exists a chain of N(T)-invariant sectional sets
V\ =U,, Vs, ..., V. = Wsuch that V., is an elementary transform of V; for i
=1,...,k—1. Thus U, can be obtained from U, by a chain of elementary
transformations, which contradicts our assumption that U,eZ.

LEmMMA 3. Let Y, and Y, be algebraic normal spaces. Suppose that Y, is
complete. Assume that there exist non-empty complete subsets Z; c Y; (i =1, 2)
such that Y, —Z, is isomorphic to Y,—Z,. Let, for i =1, 2, n; be the number
of connected components of Z;. Then n, < n, implies that Y, is complete.

Proof. We are indebted to F. Bogomolov for the following simple proof
of the lemma. We may assume that K = C, the field of complex numbers,
and consider X as an analytic space with its topology induced by the natural
topology of C. Since Y, —Z, is isomorphic to Y, —Z,, we may identify these
two spaces. Suppose that Y, is not complete, hence it is not compact. There
exists a one-point compactification Y, of Y, (since Y, is locally compact). Let
Y,—Y, = {y,). Since Z, is compact, there exist a neighbourhood U of Z,
such that U—Z, has exactly n, connected components each with non-
compact closure in ¥,—Z, and a neighbourhood V of y, such that U nV
= @. The set Y,—(U u V) is compact and, for any compact subset F > Y,
—(UuV)of Y,—2,, (Y,—Z,)—F has at least n,+ 1 connected components
with non-compact closures in Y, —Z,. However, for any such subset F we
have

(Y;—-Z,)-F = (Yn -Zn)-F

and Y, —F is a neighbourhood of Z, in Y,. Let f: ¥; = X, be a desingular-
ization of X,. Then the number of connected components of f ~!(Z,) is equal
to n, (by ZMT), and hence for any neighbourhood U’ of f~1(Z,) in Y; the
difference U'—f~!(Z,) has at most n, connected components with non-
compact closures in Y] —f"!(Z,). Now it suffices to take

U’ =f_l((yl—zl)—F)Uf-](zl) =f—l(Y1‘F)

to conclude that the number of connected components of (Y, —Z,)— F with
non-compact closure in Y, —Z, is at most equal to n,. Thus n,+1<n,.
This contradiction shows that Y, is complete.
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Leimma 4 (A. J. Sommese). Let U = X be an N(T)-invariant semi-
sectional set. Let xeU. Then either SL(2)x < U or there exist x*, x~
€SL(2) x such that

SL2)x—U =B, x* UB_x".

Proof. Let U be determined by the semi-section (4=, A%, A*). Assume
that SL(2)x ¢ U. Then there exists a connected component X; of XT such

that either
X,eA~ and X, nSL(2)x#Q

or
X;eA* and X7 nNnSL(2)x # Q.

Since wA™ = A%, ©(X;) =(wX;)*; hence

X;eA™ and X7 nSL(2)x#0
iff

w(X)eA* and (w(X))" NSL(Q)x # Q.
Thus we may assume that X;e A~ and X; nSL(2)x # Q. Let
x~eX; nSL(2)x.

It follows from [7], Theorem 7.1, or [5], Theorem 2, that

B_x" <X nSL(2)x<=SL(2)x-U
and for x* =1(x”) we have

B,x* =SL(2x-U.

Therefore, it suffices to show that if B_ x;, =« SL(2)x—U for some x, e X,
then B_x~ =B_x;. Consider the Bruhat decomposition SL(2)
= B_ UB_tB_ and assume that B_ x~ # B_ x,. Then

B_tB_x" o B_ x,

and we may assume that thx~ = x, for some beB_. Thus x, et(X;") = (wX))".

Therefore
B, x;uB_x, cSL(2)x-U.

Since B_ x, U B, x, is connected and X —U is a union of two disjoint and
closed subsets () X; and |J X;, we have
XIGA- x_,-;A*'
B_x,uB,x;c |J X; or B_x;uB.,x;c | X/.

XjeA~ Xjed®t

Since (again by [7], Theorem 7.1, or [5], Theorem 2) () X; is B_-invariant
XJ'GA_
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and U+ X; is B.-invariant, we infer that either

XjeA
B_B,x, = | Xj
XjGA-
or
B,B_x, = | X/.
XjEA+
Thus

SL@)x, = U, X or SL@Qx, = U_X;

XjeA XjeA -

(since B, B_ and B_ B, are dense in SL(2)). This leads to a contradiction
since SL(2) x; is t-invariant and no t-invariant connected non-empty set is
contained in
U Xju U X;.
Xjea™ XjeA~
LEMMA S. Let U be an N (T)-invariant sectional set determined by a
section (A=, A*). Let X;, be a maximal element of A~ and let X;  be not
comparable with w(X; ). Then (\ gU is open and SL(2)(X;y— B, X; ) is a
geSL(2)
closed subvariety in () gU.

geSL(2)
Proof. In the proof we use several times without mentioning [7],

Theorem 7.1 (or [5], Theorem 2). First we prove that

geSL(2)

Suppose that, for some xo€ X ,-;—B+ Xiy» SL(2)x, is not contained in
N gU. Then SL(2) x, is not contained in U. It follows from Lemma 4 that

geSLI2)
SL(2)xo—U =B, g,xouB_g,x, for some g,, g,eSL(2).
Let U’ be the sectional set determined by the N(T)-invariant section
(A" = (X Do WX, (A* = (X)) U 1Xi,)).
Then B, xo " U’ = @ and B_ t(x,) N U’ = Q. Therefore, again by Lemma 4,
B, g,xo < U and B_g,x, = U’, and thus

B, gyxouB_g;x < X, U(W(Xio))+
(since U'-U = X; u(w(X,-o))+). But B, g, x, is irreducible; hence
B.gixo<Xi, or B,gyxo<(w(X;))" .

If B, g, xo < X;,, then B_ B, g, xo < X;, (in fact, X; is B_-invariant)
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and SL(2)x, = X;, (since B_ By = SL(2)). But this is not possible since
XoeX}—B,X;, and (Xp-X,)nX;=0.

If B, g, xo C(w(X;O)) then g, xoe(w(X; 0)) and hence g, ¢B, .. Smce
SL(2)=B,uB,1B,, g,eB,1B,, and we obtain b, xo€(w(X,, )"
some b,eB*. But b,xoeX;, and therefore 1b, xoe(w(Xio)) Thus
b, xoew(X,O) and xoeB+ X,, but this contradicts our assumption that
xoeX —B., X;,.

The sets () gU and () gU’ are open (see [2], 4.2). Moreover, since

eSL2) 9eSL(2)
SLQ(Xis—B. X;) < N gU,
geSL(2)
we have
SLQ(Xi;—B+ X;))= () gU—- N gU".
aeSLU2) o SLLD)
Thus SL(2)(X;"—-B, X;,) is a closed subvariety of () gU. The proof is
geSL(2)
complete.

CoRroLLARY 1. Let U be an N (T)-invariant sectional set determined by a
section (A=, A*). Let X, be not comparable with w(X; ) and maximal in A~.
Then the geometric quotient

SL(2)(Xi,— B+ X;) ~ SL()(X;s— B, X;p)/SL(2)
exists and
SL(2)(X;y,—B, X;)/SL(2) =~ X;; —B, X; /B, .
Proof. The existence of the geometric quotients
SL()(Xi, — B+ X,)) ~ SL)(Xi— B, X, /SL()
and
xi;—B+ Xio - (Xi;_B+ Xio)/B+

follows from Lemma 5 (and [2], Theorem 4.1) and Lemma 1, respectively.
Since the geometric quotient is categorical, we have a canonical morphism

n. X;;‘B.'. X'.O/B*' d SL(Z)(X‘-;—B.*. XIO)/SL(Z)'

The morphism n is surjective. Moreover, n is injective. Otherwise, we
would have two different B, -orbits in X ,-‘:)—B+ X;, contained in one SL(2)-
orbit. However, this is not possible since then for the sectional set U’ defined
as in the proof of Lemma 5 the SL (2)-orbit would contain two different B, -
orbits not contained in U’, and this contradicts Lemma 5. Since
SL(2)(X;;—B+ X;)/SL(2) is normal, n is an isomorphism.
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Remark. If X;' =B, X; = @ and U is any N(T)-invariant sectional set
determined by a section (4~, A*) such that

N gU # 0,
¢eSLE2)
then X;eA*. In fact, X;* =B, X; = @ implies X;" = B, X;. Hence

dim X" =dimB, X; <dim X;+1.

Thus dim X; > dim X — 1. If dim X; = dim X, then X; is the sink, and hence
X;eA*. If dimX; =dim X —1, then either

dimSL(2) X; =dimX -1
or
dimSL(2) X; =dim X.
In the first case,
X;>w(X;) and X;eAd";
in the second case,

SLQ X, n N gU#0Q,

geSL(2)
and hence again X;eA™*.

LeMMA 6. If there exists an N (T)-invariant sectional subset of X, then
there exists an N (T)-invariant sectional subset U such that the geometric
quotient

N gU - N gU/SL(2)

4eSL2) 4eSL(2)

exists and () gU/SL(2) is a complete algebraic space.
9eSLL2)

Proof. Since X is projective and smooth, there exists an SL(2)-
linearized very ample sheaf L. Let X* and X* be the sets of stable and semi-
stable points with respect to T-linearization of L. The set X** is semi-sectional.
Let the semi-sectional set correspond to a semi-section (4~, A%, A*). Since
X* is N(T)-invariant, we have w(A*) = A~ and w(4% = A4°. Since there
exists an N(T)-invariant sectional set, there is no component X; of X T such
that w(X;) = X;. Thus there exists an N (T)-invariant section (4; , A]) such that
A > A" (and hence A7 > A7). Let U be the sectional set corresponding to this
section. It follows from Theorem 4.1 of [2] that the quotient

o: N gU— ) gU/SL(2)

9eSL(2) 9eSL(2)

exists. It follows from Chapter 2, Section 1, of [6] that the semi-geometric
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quotient
¥: ) gX¥ - ) gX*¥/SL(2)
geSL2) geSL(2)
exists and () gX*/SL(2) is projective. Notice that X* > U o X* and there

4<SL(2)
exists a surjective morphlsm

a: () gU/SL(2)— () ¢X*/SL(2)

geSLA2) geSL2)
(since ¢ is a categorical quotient) and a restricted to
N gX9SL(2) = () gU/SL(2)

geS12) geSL(2)
is an isomorphism onto
N gX°/SL(2) = () gX*/SL(2).
¢eSL2) 9eSL2)
Moreover,
X=-U= U (X} v(w(xy))
X;eC

U-x*= U (X7 u(w(X)*),

X;eC
where C = A} — A,. It follows from Lemma 5 that
N gU= ) gX*v U SLQ)(X; —B_ X))
¥eSLU2) geSL(2) X;eC

and
N gU/SL(2)= () gX*/SL(Q)u U SL((X; —B_ X;)/SL(2).
X,'@

4eSL2) qeSL(2)

But, by Lemma 1, for any X;eC the geometric quotient

(Xi —B_ X)) >(X; —B_ X,)/B_

exists and (X7 —B_- X;)/B_ is complete.
Therefore, by Corollary 1, SL(2)(X; —B_- X;)/SL(2) is complete and we

may apply Lemma 3 taking

Yi= (N gX*¥/SL(2), Y,= () gU/SL(2),
eeSL2) geSL)

Z,=a(Z,) and Z,= () SLQ)(X; —B_ X,))/SL(2)
X;eC

to conclude that () gU/SL(2) is complete.
geSL(2)
Now, we proceed with the proof of the theorem. By Lemmas 6 and 2 it

is enough to prove that if U, and U, are N(T)-invariant sectional sets such
that
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(i) U, is an elementary transform of U,,
@) N gU,/SL(2) is complete,
4eSLA2)
then () gU,/SL(2) is complete.
@ STy .
It follows from (i) above, Corollary 1, the Remark following Corollary 1
and Lemma 1 that we may apply Lemma 3 for

Yi= () gUySL(Q2), Y= () gU,/SL(2),

9eSL(2) geSL(2)

Z, = SLQ)(X};— B, X, )/SL(),
Z, =SL()(X;;—B- X,,)/SL(2)

and conclude that () gU,/SL(2) is complete.
9eSL(2)
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