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The well known Fatou theorem asserts that if f is an analytic boun-
ded function in the disc |2|] < 1, then f has a non-tangential limit at al-
most every point e (0 < v < 2w). Several authors extended this result
to harmonic functions. Some known generalizations of Fatou theorem
to harmonic functions in certain kinds of domains of an »-dimensional
Euclidean space F, are due to Brelot and Doob [5], Calderdén [6], Carleson
[7], Widman [14], Hunt and Wheeden [10]. In a subsequent study Kato
[11] extended these results to non-negative classical solutions of the
equation of heat conduction in an infinite strip (0, 7'] X E,. Results of
Kato were extended by the author in [8] and [9] to classical solutions
of special parabolic systems of equations and to non-negative weak
solutions of parabolic equations in a divergence form. The present paper
deals with similar problems for weak solutions of a very general class
of linear parabolic equations in an infinite strip and in a bounded domain,

1. Definitions. By x = (#,, ..., ,) we shall denote a point in the
space E, with » > 1 and by ¢ a point of the real line. Let T' be a fixed
positive number. In this paper 2 will always denote a bounded domain
in E, and 2 will denote a domain which is either a bounded domain 2
or the space E,. We shall use notation introduced by Aronson in [3].

Let B,(X) denote a Banach space of functions defined on X with
a norm |-|,, and let B,(I) denote a Banach space of functions defined
on an interval I with a norm |-|,. A function w = w(¢, #) defined and
measurable on I X2 is said to belong to the class B,[I; B,(X)] if w(t, )
eB,(2) for almost all tel and |w|,(t)]; < oo.

Classes L[I; L?(X)] will be denoted by L*?(I X 2'), and for we LP*(I X X)
with 1 < p, ¢ < oo we define

Iollzg = (1ol d0)™” @) ™.

Iz
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A measurable function w on Q is said to belong to H“*(2) if w pos-
sesses a distribution derivative w, and

i 12
lwllz20y + w2y = (f(l’wlz-i-z l’wzi|2) d.'v) < o0.
Q iz

The space Hy*(R) is the completion of the function space Cy°(£)
in the norm |jw|2(q)+llw,lIz2(q) , and the space H*(E,) is the completion of
the function space C*(E,) in the norm lpllzee,y + lzllzz,, -

Given (t,x)e(0, T]x 2, consider the second order linear differential
operator

Lu = w,— {Ay(t, )u,,+ 4;(, 2)u},,— B;(t, x)u, — C(t, 2)u,

where coefficients A4,;, 4;, B; and ¢ are measurable in (0, T']x2. We
use the convention of summation over repeated Latin indices. Through-
out this paper we shall. assume that the operator L is uniformly para-
bolic (i.e., there exists a » > 0 such that for all é¢F, and for almost all
(¢, )e(0, T1x X there is Ay;(t, x)&:& > v|£(?) and coefficients A (2, »)
are bounded in (0, 7] xZ.

2. Fatou property for solutions in (0, 7] X F,. In this. section we
shall deal with the non-negative solutions of Lv = 0 in the strip (0, 7] X E,.
Troughout this section it will be assumed that the coefficients of L sat-
isfy the following conditions:

I Let @, = (0, T] X(]x] < R,). The coefficients 4, and B; are bounded
for |#|> R, and t¢(0, T']. Each of the coefficients A; and B; belongs to
space LP?(Q,), where p and ¢ are such that

2<p,g< o0 and -2—'2 +%<%.

II. Let F denote the family of cylinders of the form (0, 7]x RE(s)
contained in (0, '] X E,,, where R(cs) denotes an 6Pen cube in E, of edge
length ¢ and ¢ = min(1, l/f). The coefficient C is bounded from above
for (¢,2)e(0, T]X (x| > R,), and sup|C|l, < oo where the norms are
taken over cylinders in the family F, and p and ¢ are such that

1< < oo and i + L <1
SPres 2p q .
We say that u(t, 2) is a weak solution of Lu =0 in (0, T]1XE, if
weL®[6,T; L} . (E,)INnL2[8,T; HZ(E,)] for all 4¢(0,T) and

[/ (— g+ Ay 90+ Ajup, — Byu, o — Cug)dids = 0
O,TIxE,
for any ¢eCy((0, T) X E,).



PARABOLIC EQUATIONS 129

It is known that, under conditions I and II, there exists a funda-
mental solution I'(¢, ; v, y) of Lu = 0 defined for (¢, z), (v, y)e(0, T1X E,
(r <), which satisfies the estimates

lw—ylz)

i1—1

1) K '(t—v) " exp( —ay

— 2
<I'(t,x; r,y)gK(t—t)""’zexp( —ay @yl )

t—7
for all (¢, z), (v, ¥)e(0, T) X E,, where K, a; and a, are positive const:%nts.
The existence of I' and estimates (1) were proved by Aronson [1], [2], {3].

THEOREM 1. If wu(t,®) i8 a non-negative weak solution of Lu = 0
in (0, T]1XE,, then there exists a non-negative function f(») such that

limu(t, ) = f(x) almost everywhere in E,
t->0

and ¢~ f(x)e L1 (B,) for some 1> 0.

Proof. It follows from the representation theorem (Theorem 12
in [3]) that there exists a unique non-negative Borel measure p such
that, for all (¢, x)e(0, TI1XE,,

u(t, s) = [I'(t, z; 0,y)e(dy),
En

where

o(E) = [e""o(dy) (y>0),
E

E runs over all Borel subsets of E,, and the non-negative measure o is fi-
nite. By the Lebesgue decomposition theorem ([13], Theorem 14.6, p. 33)
there is a non-negative function f(y) ¢ L},.(E,) and a non-negative singular
‘measure u such that

e(dy) = f(y)dy + u(dy).

It is known that almost every point of the integrable function f is
a Lebesgue point and symmetrical derivative of the singular measure u
is almost everywhere equal to zero. Therefore, for any ¢ > 0, there exist
a, b > 0 such that

o [ oW —o@)|dy+uldy) <

ly—z|<a

for all 0 < a < 2b. For every 0 < t < min(2b, T') choose a positive integer
P(t) such that

oP-11 < b < 2PVE.
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Consider the inequality
(2)  |u(t, @)= [T(t, z; 0,9)f(2)dy]
E’n

< [ T@ @ 0,9)0If ) —f@)dy+ ndy)]+
ly—z|<Vt
P
+> [ I, e 0,9)If @) —f@)]dy+ p(dy)]+

L=1l-Wic|y—z|<2Wt '

+ [ Ie,e; 0,9)f@dy+ [ T(t,2;0,9)e(dy) =J1+Jo+ 3+

|[y—z|=b ly—z|=b '
Using the upper bound (1) of I, it is not difficult to verify that (for
details see [8] or [11])

(3) limJ; =0 fori=1,2,3,4.
Since (Theorem 10 [3])
lim f]"(t,m; 0,y)dy =1 for all xeF,,

t—0 E,

we infer, by (2) and (3), that
Lm [T(t,a; 0,9)e(dy) = f(a).

-0 g
Using the lower bound (1), we conclude that
o' f (2) e I} (B,)

for some 4> 0.
THEOREM 2. Let u(t,x) be a mon-negative weak solution of Lu = 0
in (0, TIXE,. If imsupu(t, ®) < oo for all wekE,, then there exists a non-
>0

-negative function f(x) such that

e Mo’ f(z)e LV (B,) for some A>0,
u(t,o) = [T(t,2; 0,9)f(y)dy
Ey

for all xeE,, and limu(t, x) = f(x) almost everywhere in E,.
50

Proof. From inequality (1) it follows that

constt~ 2o (ly — x| < l/i) <t 2 f o(dy)
|y—z|<1/t_

< [ T, 5 0,y)e(dy) < ult, ).
ly—z|<Vt
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Hence symmetrical upper derivative of measure g is finite for all
zeE,. In view of Kato’s result [11], the measure ¢ is absolutely contin-
uous with respect to Lebesgue measure, therefore uy = 0.

3. Fatou property for solutions in a bounded cylinder. Let 2 be
a fixed bounded open domain in E, and @ = (0, 7] X 2. Throughout
this section it will be assumed that coefficients satisfy the following
conditions:

I'. A;, B;eL*(Q), where p and ¢ satisfy

2 < < and " 4+ 1 Z 1
< o —_— =< —.
P d 2 g 2
II'. CeLP%(Q), where p and g satisfy
1< < and " + 1 <1
\ w - _ L]
p,q 2p q

A function (¢, x) is said to be a weak solution of Lu = 0 in @ if
ueLl®[6, T; I*(Q)INL*[d, T; Hy*(2)] for all 6¢(0,T) and if (¢, x)
satisfies

[J (—upi+ Ay, 90+ 400, — Bjuy ¢ — Cug)dids = 0
Q

for any ¢eCy(Q).

Assumptions I’ and II” imply the existence of a weak Green function
G(t,v; ,y) of Lu = 0 defined for (¢,x), (7,¥)eQ (r<t). Let Q' be
a convex subset of £ such that the distance from ' to the boundary
of 2 is positive. Then there exist positive constants %, C,, C, a; and a,
such that

. 2
(4) G(t, x; r,y)>01(t—r)‘”’2eXP(—a1 it )

t—1
for all z, £¢Q and T <t< 7+17, and

(5) G(tiz; 7,9) < Cz(t—t)‘”’zexp(_az la;—ylz)

t—7

for all (¢, 2)e(0, T') X 2.

The existence of the Green function and estimates (4) and (5) are
due to Aronson ([3], Theorem 9). We shall use these results to derive
a representation formula and the Fatou property for any non-negative
weak bounded solution of Lu = 0 in .

THEOREM 3. If u(t,x) is a mon-negative weak bounded solution of
Lu =0 in Q, then there exists a mon-negative Borel measure ¢ such that,
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for all (t, x)eQ,
u(t, o) = [G(t, z; 0,9)e(dy).

Q

Proof. Our proof is similar to that of Krzyzanski [12]. In [4] it
is shown that every weak solution # of Lu = 0 in @ has a representative
which is continuous in . Therefore we shall assume that « denotes the
continuous representative of a given weak solution. Hence there is no
difficulty in talking about the value of » at any point of its domain.
For arbitrary se(0, ), u(t, «) is a solution of the boundary value problem

Lv =0 for (t,2)e@, v(s,2) =u(s,x) for xef

and .
v(t,x) =0 for (¢, x)e(s, T]1%x0L,

where 002 is the boundary of 2. It follows from Theorem 9 in [3] that
(6) u(t, ) = [G(t,3; s, y)u(s,y)dy
Q2

for (¢, z)e(s, T]1x Q2. For an arbitrary fixed x,¢2 and for each se(0, T)
define the Borel measure

(7) 0s(B) = [G(T,m0; 8, 9)u(s,y)dy
E

In view of (6),
0s(B) < 0,(2) = u(T, @)

for all Borel subsets E of . Since the measures g, are uniformly bounded
there exists a sequence s; -0 such that corresponding measures 0s;
converge to a Borel measure g. In particular,

lim [ fy)ey(dy) = [F®)&(d)

—>OO_Q

for any feCj(R). Set 2 = |J K,, where each K, is a compact set and

r=1

K, c K, for all r. For each K, we define a function %,¢Cy(2) such that
h.(z) =1 for zeK,. Using (7) we get from (6) the equality

w(t, x) = fGt ®; 85, Y) (1 — b, () u(s;, y)dy +
+ [G(t, @5 8, )F(T, 305 8, Y) " 1, (Y) 05 (dy) = 1+
2

for all (¢, x)e(s;, T]x 2. Since u is bounded we find that limJ, = 0

r—00

uniformly with respect to s;e(0,%/2]. In view of the choice of &,
G(T, z,; Siy y)—lhr(y)e(}'g([))
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for all s; < T and r. Hence
Lmd, = [G(t, @; 0,9)G(T, 205 0, ) h,(4)2(dy).
Q

j—00

Thus it follows from the monotone convergence theorem that « is
given by the formula

u(t, ) = fG(t7w§ 0,9)e(dy),
9]

where ¢(dy) = G(T, @5 0, )" e(dy). |
THEOREM 4. If u(t,x) i8¢ a non-negative bounded weak solution of
Lu = 0 in Q, then there ewists a non-negative function felLi,,(R2) such that

w(t, ) = [@(t,@; 0,9)f(y)dy

or all (¢, x)eQ and limu(t, x) = f(x) almost everywhere in L.
£->0

Proof. By the Lebesgue decomposition theorem there exist a non-
-negative function feLj,,(£2) and a singular measure u such that

o(dy) = f(y)dy + u(dy).

Let x be a fixed Lebesgue point of f at which symmetrical derivative
of the measure u is equal to zero. Set

w(t, ) = [@(t, @5 0,y)eldy)+ [ GG, ;5 0,9)e(dy)

B(x) Q- B(x)
= J1 + Jza

where B () is a closed ball with the center # such that dist(02, B(z)) > 0.
Using the metod from the proof of Theorem 1 we obtain limJ, = f(x).
t—0

Applying estimate (5) we find that limdJ, = 0. Since w is bounded in Q,

t—0
using estimate (4) we conclude that symmetrical upper derivative of o
is finite for all e, hence u = 0.
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