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1. Introduction. In 1957 Mostowski [2] introduced the notion of
a generalized quantifier. Some generalized quantifiers became of special
interest, e.g. the quantifiers ,, where (Q,r)¢(x) is interpreted as “there
exist at least N, many « such that ¢(z)”. Let L, be the language which
is formed by adding, to the first-order predicate logic L with equality,
the quantifier ¢,. The question arises whether there exists a set of axioms
and deduction rules for L, such that every sentence deducible in L,
is logically valid and conversely. For Ly this question was answered
positively by Keisler [1]. To prove this he introduced the following notion
of a weak model for Ly : (U, p) i8 & weak model for Ly if A is a structure
for L, and p is a set of subsets of A. In this paper we study these weak
structures. When trying to consider the Model Theory for weak models in
a more systematic way, one can observe that there are several reasonable
ways to introduce the notion of a submodel and of an extension. The aim
of this paper * is to suggest notions which seem to be the most natural
(i.e., having the most natural properties) in the Model Theory.

In Section 3 we introduce four different notions of a submodel and
of an extension.

In Section 5 we discuss the notion of a chain of models. In all
considerations we distinguish four cases corresponding to the four defini-
tions of a submodel and of an extension.

In Section 6 elementary extensions and elementary chains are studied.
The first definition of an elementary extension turns out to be closely
related to the definition of an elementary extension given by Keisler [1].

* This paper and its sequel (this volume, p. 161-173) form the master thesis of
the author. He made it as a student of Prof. de Iongh, Nijmegen, under guidance
of Dr. B. Z. Weglorz. The publication of this paper was possible when the author
was in Wrocltaw, supported by grants of the Polish government and the Niels
Stensen Stichting, Holland.
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We prove some generalizations of theorems of [3]. The sequel of this paper
will contain a study of the Compactness Theorem for weak models for
Ly, and of both Lowenheim-Skolem Theorems. We shall prove there
also a Lo§ theorem for the models concerned.

From this paper and its sequel it follows that the first definition of
a submodel and of an extension gives the best possibilities to generalize
properties of structures for L to weak structures for L .

2. Preliminaries. Throughout this paper the Greek letters &, (¢, 4,7
denote ordinals, and «, 8, v, », 4, u, » denote cardinals. 8(A4) is the set of
all subsets of the set A. Let L be & first-order predicate logic with equality.
L is supposed to have no function symbols. The predicate letters of L are
P, for &£ < a, where a is a cardinal fixed for the given language L. The
set {¢;: & < B}, where g is also a cardinal fixed for the given language L, is
the set of individual constants of L. The language L has countably many
variables v,, v;, ... The notions of a formula of L, of a sentence of L and
of a structure for L, are as usual, as is the definition of A k ¢[a,, ..., a,].
Let L, be the language which we obtain from L by adding to L the quanti-
fier Q. The set of formulas of L, is the smallest set X which has the follow-
ing properties:

(i) all atomic formulas of L are in X;

(ii) if @, p are in X, and y is a variable, then pay, ¢, (3y) and
(Qy)p are in X.

A structure for L is a pair (U, p) such that A is a structure for L and
p < 8(A). The notion of an n-tuple a,, ..., a,¢ A satisfying a formula
®(vy,y ..., 0,) Of Ly in (A, p) is defined in the usual way, by induction on
the construction of ¢ and is denoted by (U, p) kF ¢[a,, ..., a,]. The @-clause
in the definition is

(QI’ p) E (va)(p[ah M a‘n] lff
{be A: (QI, P) Folay, ..., 6y, b7 Qi1 =y an.]}fp,
where ¢(v,, ..., v,) is a formula of L, and m < n. The other clauses in the

definition are the familiar ones for L.
Definition. (i) Let (A, p) and (A, ¢q) be given. Then

(A, p) =+ (A, @)
if
(A, p) Fplay, ..., a,] itt (A, q) Fola,,...,a,]
for all formulas ¢ in Ly, all n and all n-tuples a,, ..., a, in A.
(ii) Let (A, p) and p* < S(4A) be given. Then p! is called minimal
with respect to the p-interpretation of @ in U if (U, p) =. (A, p!) and
p! < qfor all ¢ = S(A) such that (A, p') =« (A, ¢q).
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The following Lemmas 1 and 2 show that, for every (U, p), there is
exactly one p' < S(A4) which is minimal with respect to the p-interpreta-
tion of @ in A.

LEMMA 1. Let (U, p) be given and let p, = {xe p: there are a ¢(vy, ..., v,)
in Ly, an n, an m < n, and an n-tuple a,, ..., a,¢ A such that x = {be A:
(Uyp) Fplay, .oy @1y b, @yyryyveny a’n]}}- Then (U, po) =+ (A, p).

The proof follows by induction on the construction of ¢.

LEMMA 2. Let (U, p) and (U, q) be given and let p, be as in Lemma 1.
If (A, p) =+ (A, q), then p, < q.

Proof. Let ze p,. Then w¢ p, and so we have

(A, p) E(Quy)play, ..., a,]
a'nd, by (QI,p) == (‘2[7 Q)7

x ={bed: (U, q) Fol[a,...,b,...,a,]}
and
(QI’ q) F (Q’vm)(p[a17 R a'n]'
Hence xeq.
Let (A, p) be given. If p is minimal with respect to the p-interpreta-
tion of @ in A, then we will call p, simply, minimal.

3. Substructures and extemsions. We introduce now four different
notions of a substructure and of an extension. Let (A, p) and (B, q) be
given structures for L.

(a) (A, p) =,:(B, q) if A < B and, for every ze p, there exists a yeq
such that x = ynA.

(b) (A, p) =:(B, ¢ it (A, p) <, (B, q) and, for every yeq, yndep.

(¢) (A, p)<5(B,q) if A<B and p < q.

(d) (AU, p) <4(B,q) if A< B and p = ¢gnS(4).

Note that if (U, p) and (B, q) are such that, for a certain ordinal «,

p={X<cd: [X|>N,} and ¢ ={XcB: |X|>N],

then, considering A and B as structures for L, , we have (U, p) =,(B, q)
iff A < B.

It (A, p) <:(B,q), where ie{1,2,3,4}, then (A, p) is called an
i-submodel of (B, q) and (B, q) is called an i-extension of (A, p).

The following shows the relation between structures for L, and cer-
tain second-order structures.

Let K be the class of structures {C, A, P, E, P§, ¢ Y; o <p sSuch
that the following conditions are satisfied:

(1) C is a set.

(1i) A4 is a unary relation over O, which is not empty.
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(iii) P is a unary relation over C.
(iv) PNnA =@ and Pud =C.
(v) F is a binary relation over C such that A (z) and P(y) whenever
E(x,y).
(vi) For every & < a, P{ is a relation over C such that A (x;) for all
ie{l,...,n} whenever P{(z,,...,x,).
(vii) For every ¢ < B, ¢f is an element of C such that A(cf).
(viii) The following sentence holds:
VoV, ((P('Uo)’\P('vl)) - ((’00 =0,) 2 (V'vz) (E("’zv Vo) < H(v,, "’1))))
We can translate the formulas of L, into formulas of Lg, i.e., the
language of K, as follows:
p* =¢ if ¢ is an atomic formula of L,,
(pry)* = ¢*Ay*,  (pvy)* =g*vy*,
(To)* = Ug*),  (Azg)* = (I2) (4(@)r9¥),
(Que)* = (32) (P(2)A(Vy) (E(y, ) = ¢*())).
If (A, p) is a structure for Ly, then (A, p);; is the structure
<C7 AC’ PC’ EC’ P?’ C(g>’

where C = Aup, A = A, P° =p, E°x,y) iff zey, (@,..., 2, eP¢
iff (@, ..., 0> PP and ¢f = efP). Let <(C, A®, P°, E°, P¢, ¢ be
a structure in K, denoted by A. Then A; is the structure (A, p), where

N = {weC: 4 F Ax]}, PE, ¢
and yep iff there exists a Y e C such that
AEP[Y] and y ={weC: Ak E[z, Y]}.

Then we have immediately the following: for every formula ¢ in
Lgy, for every structure (%, p) for Ly, and for all a,,...,a,¢4,

(A, p) Fplay, ..., a,] iff (Uy ) F @*[ay, ...y a,];

for every formula ¢ in Ly, for every structure 4 in K, and for all a,, ..., a,
in C such that 4 F A[a;] for all ie {1, ..., n},

A Eo*[ay,...,a,] iff A Egla,...,a,].
The notion <, corresponds to the notion < for structures of K. Let
— c c c cy C
4 =04 A A7P Ay E A7PEA’ "'CA>€K

and let B = (Cpg, ..., GfB>e K be such that 4 = B. We shall prove that
A; <, B;y. For let A; = (A, p) and B; = (B, q). Obviously, A < B, so
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take xe p. Hence there exists a Y e €, such that
AEP[Y] and & =1{2¢C,: AF E[z,Y]}.
Since 4 < B, we have YeCp and B E P[Y]. Let
y — {2 Cp: BEE[z, Y.

Then yeq and yNnA = », which proves (U, p) <, (B, q).
If (‘ll,p) <, (B, q), then there are 4 and B in K such that A;
= (A, p), = (B, q), and 4 < B. The only difficulty is to construct
the unlverseb and the relations P! and P°%.
Let p = {d:: & < x}. Then it is possible to write

g ={e: E<nU{e: n<E< 7},

where ¢;N4 =d; for all &< x Put C4 = AU{e;: £<x}, P P%(z) ift
x = e, for some & < %, (1347 (v, y) iff y = e, for some §<xa.ndcved£ Let
Cp = BU{e,: £< A}, P B(x) iff # = ¢, for some & < A, E* (w,y) iff xey.
All other relations and the realizations of the individual constants
are the same as in (U, p) and (B, q). Now we have 4 < B, 4; = (A, p)
and B; = (B, q). Roughly speaking, the structures 4 and B are con-
structed by choosing right names for the elements of p and gq.

4. Mappings. Let & and B be structures for L and let f: A— B be a
one-to-one homomorphism. Then f(%) denotes the structure (C, P¢, ¢f>
such that

(i) e C iff ® = f(y) for some ye A;
1) (@), -ees F(a)) € PS I Cay, ..., 6, € PE;

(iif) ¢ = f(ef').

Let (A, p) and (B, q) be given. We shall call f a pseudo-mapping
between (2, p) and (B, q) if dom f == AU p,rng f < Bug, each element
of A is mapped on an element of B, and each element of p is mapped on
an element of g¢.

If f is a pseudo-mapping of (A, p) into (B, ¢), then for each element
z in p we have to distinguish between its value by f and its image.
If X < A, then the image of X, fx X, is the set {f(z): x¢ X}. So the value
by f of an element of p does not need to be equal to its image.

Definition. f: (A, p) - (B, ¢q) is a mapping if f is a pseudo-mapping
between (U, p) and (B, q) such that f+z = f(x) for all ze p.

From this it follows immediately that if the restriction of f to A is
one-to-one, then the restriction of f to p is one-to-one.

If f: (A, p)— (B, q) is a mapping, then f(A, p) denotes the structure
(D,r), where D = f(A) and = = {f(x): zep}.

Definition. Let f: (A, p) — (B, S(B)) be a mapping, ¢ a subset
of S(B), and 7 € {1, 2, 3, 4}. Let, moreover, the restriction of*f to A be
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a one-to-one homomorphism. Then
(a) f is an i-embedding of (U, p) into (B, ¢) if f(A, p) <, (B, q);
(b) f is an isomorphism between (U, p) and (B, q) if f(A, p) = (B, ¢q).
THEOREM 4.1. Let f be an isomorphism between (U, p) and (B, q).
Then, for all formulas ¢ in Ly and all a,, ..., a,¢ A,

(A, p) Fplay, ..., a,] iff (B, 9 Felfla),..., fla,)].

The proof is trivial.

If f is a mapping between A and B, where A and B are structures
for L, and if p < §(A), then f induces a mapping between (U, p) and
(23, 8(B)) by f(#) = f*x for all ze p. This induced mapping will be also
denoted by f. Conversely, if f is 8 mapping between (U, p) and (B, ¢), then
the restriction of f to 4 is a mapping between A and B. Also this mapping
will be denoted by f.

5. Chains of models. In this section the notions of a chain of models
and the union of a chain are defined in the four cases corresponding to
the four definitions of an extension and of a submodel. The notion of a chain
of models has sense only if we can define a structure which can be con-
sidered as the limit of that chain. Especially, in the cases of <, and <,
we must be careful with the relations between p’s.

Definition. Let (., pe):cs be a collection of structures such that
4. < A, for all £ <. A collection (y)s <ccs is @ tower in (Pelecs If Yse pe
for all &, &< £< 9, and y, = y,N4, for all &, n with &, < &<y <.
Such a tower is said to begin with y, .

A collection (p;):s 18 called closed with respect to towers if, for every
§o< 6 and y, e p,, there exists a tower in (p;):., which begins with v, .

Now we can define the notions of a chain.

Definition. Let ie{l,2}. A collection (U, p:)ecs is an i-chain if

(i) (levps) =5 (%[wpn) for all £ < n< 6;

(ii) & collection (p;):.s is closed with respect to towers.

Let (Ag, p:):<s be an i-chain, where ie {1, 2}. The union of such a chain
i1s the structure (A, p), where

A=UA and zep,

iff there exists a &, < d such that xnA,ep, for all £ > £,. Roughly speaking,
p consists of the unions of towers in (p:)ss.
In the case ¢ = 3 the definition is much simpler, because so is
the definition of =,. A collection (U, p.):.s is called a 3-chain if (U, p.)
<3 (A, p,) for all & < n < 4. Its union is the structure (A, p), where
A=UA and p=U p..

E<o E<é
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In the case i = 4 we do not define the notion of a chain because of
the difficulty in defining (in a reasonable way) the union.

In analogy with the case i = 3, (U:, P)ecs 18 & 4-chain if (U, p.)
<4 (A, p,) for all £ < 5 < 4. One might expect that the union of a 4-chain
should have, as in the case ¢ = 3, the property that if a structure is a 4-ex-
tension of each element of the chain, then it is & 4-extension of the union.
However, in general this is not true.

Example. Let X; ={neZ: n< 4} for all 4¢ N. Let (U, p;,) =
{X;, p;), where zep; iff # = X; for j <. Then (U, p;) <, (Y;, p;) for
all ¢ < j. The structures (U, p) and (A, q), where A = (Z), p = {X;: je N}
and ¢ = puU{Z}, are both 4-extensions of each element of the chain and
so cannot be both 4-extensions of the union, because the union has the
universe Z.

Remarks. 1. We can generalize the above-given definitions and
define the notion of an i-directed system. Then we have to introduce the
notion of a special tower in a directed set 8. A set Y < 8 is a special tower
in 8 if Y is a maximal chain in {be 8: b > a} for some ae 8, i.e., Y is
a tower in S, and for every ue S there is a te Y such that v <{. Then Y is
said to begin with a. The set 8 is closed with respect to special towers if
for every ae S there is a special tower in 8 that begins with a. Not every
directed set has this property, for example the set of all finite subsets
of w, has not. We can only speak about a 2-directed system if the cor-
responding directed set is closed with respect to special towers.

2. If a 1-chain (U, p:): s 18 given, t.hen there is a chain (Qfs)k,, of second-
-order structures such that 4, = (A, p,) for all £ < 4. Conversely, if
(dg)ecs is a chain of second-order structures, then (A):cs is a 1-chain.

6. Elementary extensions and elementary chains. In this section
we define the notion of an elementary extension and of an elementary
chain. We state some generalizations of theorems in [3].

Definition. Let ie{1,2,3,4}. Then
(A, p) <:(B,q) it (A,p)<;(B,9q)
and, for all pe Ly and a,, ..., a,¢ 4,
A, p) Eplay,...,a,] if (B,q) Fela,,...,a,].

If (A, p) <; (B, q), then (A, p) is called an elementary i-submodel
of (B, q), and (B, q) is an elementary i-extension of (A, p).

Keisler [2] gave the following definition of an elementary substructure
(A, p) of (B, q): (A, p) < (B, q) if, for all pe L, and a,, ..., a,e 4,

(U, p) Fplay, ..., a,] it (B, q) Fola,,...,a,].
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There is a relation between this definition and the definition of <,
above. Namely, if p is minimal (see Section 2), then

A, p) < (B,q) iff (A, p)<:(B,9q)-

The following theorem is a generalization of Vaught’s test for ele-
mentary extensions:

THEOREM 6.1. Let us assume that (N, p) <, (B, q), where ie {1, 2, 3, 4}.
Then (A, p) <; (B, q) iff the followingy conditions are satisfied:

(i) For all e L, and ay,...,a,¢ A, if (B,q)F (v,)ela,, ..., a,],
then there exists an a, e A such that
(By @) Flary ..oy tpyy .oy @]
(ii) For all pe Ly, and a,,...,a,c A,
{be A: (B,9q) ':99[0'17'--7b7--'7a’n]}€p iff
{beB: (B,q) Folay,...,b,...,a,]}eq.
Proof. Suppose (A, p) <; (B, q). Let
{be A: (B, q) Fela,...,b,...,a,1}ep.
Then also
{be A: (U, p) Fplay, ..., b,...,a,]}ep,
and so ‘

(‘2[7 p) |= (Q/pm)q)[al7 tery a’n]’
whence

(B, q) F(Qvn)pla4, ..., a,].
This implies

{be B: (B,q) Folay,...,b,...,a,]}eq.

Let
{be B: (B, q) Folay,...,b,...,a,]}eq.
Then
(B, q) F(Qup)pla,, ..., a,],
and so

(A, p) F (Qua)play, ..., a,].
According to the definition,
{be A: (U, p) Fplay, ..., b,...,a,1}ep,
and this implies
{be A: (B,q) Felay,...,b,...,;a,]}ep.

Suppose conditions (i) and (ii) are satisfied. By induction on the con-
struction of ¢, we are going to prove that, for all a,,...,a,¢ A and all
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@ in L,
(A, p) Folay, ...,a,] iff (B, q) Felay, ..., a,].
Only the case ¢ = (Q,,)y is not trivial.
Suppose ¢ = (Qv,)y and let (U, p) F (Qv,)y[a,, ..., a,]. Then, by

the definition,
{be A: (U, p)Fylay, ..., b, 0,0 ep

and, by the induction hypothesis on v,
{be A: (B, q) Fyla,,...,b,...,a,]}ep.
By condition (ii) it follows that
{be B: (B,q) Fylay,...,b,...,a,]}eq,

and so

(B, q) F (Quy)ylay, ..., a,].
Let (B, q) F (Qv,,)y[a,, ..., a,]. Then, by the definition,

{(be B: (B,q) Eylay,...,b,...,a,]}eq,
whence, by condition (ii),
{bed: (B, q) Fy[a,,...,b,...,a,1}ep.
With the induction hypothesis on p we have

{bed: (U, p) Fylay,...,b,...,a,]}ep,

and so (U, p) F (Qu,)p(ay, ..., 6,].
If we take p = S(4)\{@} in (A, p), then the quantifier I can be

treated in the same way as the quantifier . For example, we can write
down Theorem 6.1 uniformly if we rewrite condition (ii) in the form:
For all ¢e Ly and a,,...,a,c A,
{bed: (B,q) Fpla,...,b,...,a,]}e S(A)\{O} iff
{be B: (B,q) Fpla,,...,b,...,a,]}e S(B)\{D}.
Let (A, p) be a structure for L, and C a subset of A. Then Ly is
the language which we obtain from L, by adding an individual constant

¢, for each ae C. So (U, a, p),.c is a structure for Ly -, where the realiza-
tion of ¢, in (A, @, P)acc 18 equal to a for all ae C.

LEMMA 6.2. Let (U, p) <; (B, q), where ie{l,2,3,4}. Then
Th(%, a, Placs = Th(B, a, @)ocy  ff (A, p) < (B, ).

Let L, be the language obtained from L, by adding a predicate letter
P, for each formula ¢ in L, i.e., P, is an n-ary predicate letter iff ¢ has
n free variables. If (U, p) is a structure for L, then (A, ¢%, p),. Lg is the
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structure for L, in which each P, is realized in A as ¢%, i.e.,
By ...,a,0eP, iff (U, p)Eglay,...,a,].
LEMMA 6.3. Let i€ {1, 2, 3, 4}. Then
U, p) <:(By@)  iff (U™, Ploery, Si(B) 0%, Dyery-

Elementary chains of models. Let i ¢ {1, 2, 3, 4}. An elementary i-chain
is an ¢-chain (W, pe)ics such that

(e, pe) <; (‘II,,, P, for all & < 9.

A notion which turns out to be useful is that of a simple elementary
¢hain. This is defined by an elementary submodel and of an extension
given by Keisler [1]:

A sequence of structures (W, ps)c.s is & simple elementary chain if

(%E’pe) < (‘H_vnpr;) fOI' all 5 < n.
THEOREM 6.4 (Keisler [1], Lemma 2.5). Let (W, p:):s be a simple
elementary chain. Let (U, p) be such that
A=UA and =zep

E<é

if there is an 7 << 0 such that xNAgep: for all &>=19. Then (U, pe)
< (A, p) for all &< 6.

Immediately from this we obtain

THEOREM 6.5. Let ie {1, 2, 3, 4} and let (W, Pe)ecs be an elementary
i-chain. Let (U, p) be the structure as defined in Theorem 6.4. Then

(@) (U, pe) <i(U, p) for all &< 6;

(b) if i€ {1, 2}, then (U, p) is equal to the union of the chain (W, ps):cs,
considered as an i-chain.

In the case ¢ = 3 the union of an elementary 3-chain does not need to
be an elementary 3-extension of each element of the chain.

Example. Let L have no predicate letters and no individual con-
stants. For ic w, let X; = {neZ: n < i} and (W, p;) = <X;, S(X;).

CrAamm 0. (U;, p) <3 (Wyyay Pigs) for all ie w.

Proof. Obviously, (U;, ;) S5 (U1, Piyy) for all e . Now we use
Theorem 6.1. Condition (ii) is satisfied, because p; = S(X;). So let

(Wiiry i) F (avm)‘P[a’u vy @,] for @; <7, je{l,...,n}.

Let
(QI'E+17 Piy) Felay, ...,1+1, ..., a,].

Take be X;, b #i+1, b #ay,...,b #a,, and let f: X; > X,
be a mapping such that f(i+1) =bd, f(b) =i¢+1, and f(x) =z hold
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for # £¢+1 and @ # b. Then f is an isomorphism of (%, ,, p;,,) onto
itself. From Theorem 4.1 it follows that

Wi, pi)) F@lf(ay), ...y f(i+1), ooy flay)],
and so
(Wi iry Piyy) Folay, ...y 0,...,a,].

This proves condition (i) of Theorem 6.1.

The union of the chain (W;, P;)ice 18 <Z, p), where zep iff v = X,
for some ie w. So we have Z¢ p, from which we may conelude <Z, p) k
Q) (r = x). But we do have (U;, p;) F (Qx) (r = x) for all 1¢ ». From
this it follows that, for no ie w, (A, p;) <3 <(Z, p> holds.

In the case i = 4 quite often the following situation occurs:

(Wey Pe)e<s is an elementary 4-chain and there is not a structure (U, p)
with the following two properties:

(i) (A, p) is an elementary 4-extension of each (A, p¢);

(ii) if (B, q) is an elementary 4-extension of each (., p:), then
(", p) <, (B, 9).

Example. For ie w, let {neZ: n < i} = X;. Let (U;, p;) = (X;, 0>,
(A, 1) = <Z,0) and (A, p,) =<Z, {{neZ: 2|n}}>.

Cramm 1. (W;, p;) <4 (Wipyy Piyy) for all ie o

This can be proved in the same way as Claim 0.

Cramm 2. (U;, p;) <, (A, py) for all ie w.

This (A, p,) is exactly the structure (U, p) defined in Theorem 6.4.
So this claim follows immediately from Theorem 6.5.

CrAIM 3. For all pe Ly and a,, ..., a,¢ Z,
(A, p1) Folay,...ya,]  iff (U, p) Folay, ..., a,].

The proof follows by induection on the construction of ¢. Only the case
¢ = (@v,,)y is not trivial. We shall prove that

not (U, P F (va)w[aly ceey a,] and IlOt(‘II, Pq) F (Q%)'P[au ceey @],

Obviously, not(, p,) F (Qv,)v(a,, -.., a,], because p, = @. Let

(‘2[7 Pz) F (va)y’[a’n ey a’n]‘
Then

{beZ: (U, p,) Fylay,...,b,...;a,)} ={neZ: 2|n}.
Take an even number b such that b % a,,...,b s a,. Then

(A, p2) Fylay, ..., 0,...,0a,].
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The induction hypothesis on p gives

(A, py) Fylay, ..., 0,...,a,].

Take an odd number ¢ unequal to a; for all e {1, ...,n}. Let f: Z —~ Z
be a mapping which interchanges b and ¢ and maps each other element
onto itself. Then f is an isomorphism of (A, p,) onto itself. So we have

Ay py) Eylay, ..y ...y a,].
Applying the induction hypothesis on y we get

Ay p,) Eylay...,6...,a,],

but this is in contradiction with

(A, P2) F (va)w[a’u ceey G, ]
Hence

not (917 p2) F (va)'qj[ah te an]‘

Cramm 4. (U, p;) <4 (U, p,) for all ie o.

This follows immediately from Claims 2 and 3. Now suppose there
is (A, q) which has properties (i) and (ii). Then (W', q) <, (A, p,) and
(A, q) <, (A, p,). Obviously, Z = A’ and so we have W = A, from which
it follows that ¢ = p,, and ¢ = p,. However, this is impossible.
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