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1. Introduction. The purpose of this paper is to present algebraic
properties of the process of forming subsequences.

A subsequence, finite or infinite, of a given sequence is determined
by the sequence of indices, i.e., an increasing function which maps the
set of natural numbers N or its segment N, = {1,2,...,n} into N. We
denote these functions by Greek letters a, 8,... and call them abstract
sequences or, simply, sequences.

The domain of the function a, which is always one of the sets N,
or N, will be denoted by Da and the image a(Da) will be denoted by Ia.
We denote by 0 the empty sequence with Da = Ia = O.

Obviously, the set Ia determines a entirely. If the cardinality of
Iq is finite, |Ia| = n, then Da = N,; if |Ia| = &,, then Da = N. In the
first case we call a a finite sequence, in the second case — an infinite se-
quence.

The identity mapping N — N is denoted by ¢ consequently, we
have

(1.1) De =I¢ = N; ¢(n) =n for every neN.
The inclusion mapping N, — N is denoted by ¢,; hence
(1.2) D, = I, = N,; ,(k) =k for every keN,.
We denote the set of all sequences including 0 and ¢ by S.
The following proposition is an obvious consequence of the fact

that Da contains together with every positive integer all smaller positive
integers, and that a is an increasing function:
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ProrosIiTioN 1.1. Every element aeS satisfies the following properties:
(1.3) a(n)=n for every meDa;
(1.4) If Da +# Ia, then there exists a keDa such that a(k) > k;
(1.5) If k+1eDa and a(k) = m, then a(k+1)>=>m+41.

2. The semigroup structure of S. Since the elements of S are map-
pings of N or N, into N, S has a natural semigroup structure with the
composition of mappings taken as multiplication. More precisely, we
define af as follows:

(2.1) D(af) = p~'(Da), ap(k) = a(B(k)) for keD(ap).

Note that f~'(Da) = N if and only if both sequences are infinite.
If one of the sequences is finite, we have D(af) = N,, where n is the
largest positive number neDf such that f(n)e Da.

PropoSITION 2.1. The following inclusions hold:
(2.2) Daf < Da, Daf < D8,
(2.3) Iaf < Ia.

Proof. The second inclusion of (2.2) is obvious, since f~'(N) = DB,
and, therefore, for every subset M = N we have 8~'(M) < DB. If Da = N
or Da = @, the first inclusion of (2.2) is also obvious. Suppose now that
Da = N,,. If (k) > n for every k, then 8~'(Da) = @ < Da. Otherwise,
let k denote the largest positive integer such that g(k) < n. Obviously,
k<nand g '(Da) = ~'(N,) = N, = N, = Da. Inclusion (2.3)is obvious.

PROPOSITION 2.2. The empty sequence 0 is the zero of the semigroup S.

Proof. D(08) = p~'(0) = @, D(0) = @D. Hence, 08 = f0 = 0.

PROPOSITION 2.3. The sequence & is the unity of the semigroup S.

Proof is obvious.

PROPOSITION 2.4. Elements i,, ¢ and 0 are idempotents of the semi-
group S. Conversely, every idempotent of S is either 0 or ¢ or one of the u,’s.

Proof. The identities 2 = ¢,, 2 = ¢ and 02 = 0 are obvious. Sup-
pose now that a is distinet from all ¢, 8, from 0 and from & Then
Da # @ and a(k) > k for some keDa. Let k¥ be the smallest positive
integer having this property. Now, if a(k)eDa, then, by (1.5), a%(k)
= a(a(k))> a(k) and a® # a. On the other hand, if a(k)¢D(a), Da?
does not contain k¥ while Da does, and again a? # a.

PROPOSITION 2.5. If m < n, then ¢,t, = i,t, = t,,. Consequently, the
set of elements 0, ¢, ., forms an abelian subsemigroup of S.

Proof. Indeed, Di,t, = ,;'(N,) = N,,, Di,t,, = ¢;*(N,,) = N,, and
for k < m we have ¢,¢,(k) = ¢,t,,(k) = k.
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PRrROPOSITION 2.6. A sequence a commutes with an idempotent ¢ if and
only if Ia = D¢ or Di < Ia.

Proof. The proposition is obviously true for ¢« = ¢ and ¢ = 0. Let
us assume that ¢ = ¢, for some positive integer n. Consider the following
cases:

1° If Ia = N,, then, obviously, ¢,a = a; also a is finite and Da = N,
for some k < a(k) < n. Therefore, Da = N, and Da¢, = Da which implies
at, = a. Consequently, in this case at, = ¢,a = a.

2° If N, < Ia, then, obviously, at, = a. Further, N, < Da, because
|Ia| > n implies |Da| > n, and t,a = at, = t,. Consequently, in this case
too, ¢, and a commute.

Conversely, assume that neither Ia = N, nor N, < Ia. Therefore,
there exists a positive integer keDa such that a(k) > n. Let & be the
smallest of all such integers. Then k < m, since, otherwise, we would
have a(N,) < N,, which can happen only if «(N,) = N,, i.e., if N, < Ia.
Consequently, at,(k) is well defined and so keDa¢, while k¢D:,a. Hence
at, # t,a.

As a consequence one has the following

PRrROPOSITION 2.7. The center of the semigroup S consists of 0 and e
only.

Proof. If a is not an idempotent, then there exists the smallest
positive integer k such that keDa and a(k) > k. Since a(j) = j for every
j <k, we have k¢Ia. Consequently, neither Ia = N, nor N, < Ia, and a
does not commute with ¢. "

If a is an idempotent, say a = ¢,, define the sequence g as follows:

k for k¥ < n,

Bik) k+1 for k=m.

Again, If does not contain 7, and so neither If < N, nor N, < I8.
Consequently, g and o« = ¢, do not commute.

Proposition 2.8 gives an algebraic characterization of finite elements
of S. First we must prove two lemmas.

LEMMA 2.1. The product of two infinite sequences is an infinite sequence.

Indeed, Do = f~'(Da) = $~'(N) = N.

LEMMA 2.2. If B is mot an idempotent element and if the smallest
integer k such that p(k) > k belongs to Da, then Iaf is a proper subset of
Ia, Iaf < Ia.

Proof. For j< k we have f(j) =) and, therefore, af(j) = a(j);
on the other hand, af(k) > a(k), since B(k) > k. Consequently, af(m)
> a(m) for all m >k by (1.5). Consequently, a(k)¢Iaf and Iaf # Ia.
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PROPOSITION 2.8. An element a # &, 0 of S is finite if and only if
the power a" 18 an idempotent for some n.

Proof. 1. Suppose a is finite, say Da = N,, but a #¢,. Then
there exists a smallest positive integer keN, such that a(k) > k. For
all j <k we have a(j) =j and, consequently, jeDa™ for every m and
a™(j) =j. Now, if a(k)eDa™, then, by lemma 2.2, |Da™"'| < |Da™|.
Since Da is finite, the sequence of numbers |Da|> |Da2 > ... cannot
decrease indefinitely. Therefore, for some n we must have a(k)¢Da"",
but then Da® = N,_;, and " =¢,_,; if k>1, or a" =0 if k = 1.

2. To prove the converse, note that if a 7 ¢ is infinite, then by
lemmas 2.1 and 2.2 all powers of a" are infinite distinet from ¢ and, there-
fore, not idempotent.

The relation of finite elements to finite idempotents is as follows:

PROPOSITION 2.9. An element o of S is finite if and only if there
erists a finite idempotent ¢, such that at, = a.

Proof. If at, = a, then Da = Dat, < Dt, = N,. On the other hand,
if a is finite, then for some n there is Da = N, and at, = a.

Note that, by proposition 2.5, if at, = a, then at,, = a for all m > n.
Indeed, m > n implies ¢,¢, = t,t, = t,; consequently, at, = (ay,)t,
= a(t,ty) = at, = a. For a #0 we call the greatest lower bound of
positive integers having this property, the numerical length of a, in symbols
nla. For § = 0 we put nlg = 0 and, for an infinite sequence y, nly = ooc.

From this definition one immediately obtains

PrOPOSITION 2.11. The numerical length of a equals nla = |Da)|
= |Ia]. Consequently, a is of length n if and only if Da = N,,.

PROPOSITION 2.12. An element a of S is finite if and only if there
exists a positive integer m such that t,o = a. This integer is always not
less than the numerical length of a.

Proof. If a is finite of length n, then Da = N, and, consequently,
Ia = N,y), while N, , does not contain Ia. Therefore, i,a = a if and
only if m > a(n). Since a(n) > n, our second assertion is also proved.

The smallest positive integer m such that ¢,a = ais called the numer-
ical height of a, in symbols nha. In the case of an infinite element 8 we
gset nhf = oo, also nh0 = 0. For finite elements a we have

nha = a(nla) = max{a(n)}.
neDa
An obvious consequence of this definition is the following

ProPoSITION 2.13. For every a we have nla < nha. The height of
a finite a coincides with its length if and only if a is a finite idempotent.

Using the notions of height and length of a sequence, one can refor-
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mulate proposition 2.1 without the explicit use of the domain and image.
Namely,

ProPOSIIION 2.14. For any two sequences a and B we have
(2.4) nlep < nla, nlaef <nlp,
(2.5) nhaf < nha.

ProproSITION 2.15. The equation nlaf = nlf holds if and only if
nhf < nla.

Proof. The inequality nhf < nla is equivalent to If < Da which
is equivalent to Daf = p~!(Da) = DB. This, in turn, is equivalent to
nlef = nlf.

3. The lattice structure of S. Let us define a partial order in S as
follows:

a < f if there exists a sequence yeS such that a = gy.

PROPOSITION 3.1. a < f if and only if Ia < IB.

Proof. Let a < . Then by (2.3) we have Ia = Ify < If. Conversely,
let Ia < If. Then we have also Da = Dg, and for every keDa there exists
an n; such that a(k) = f(n;). Obviously, n, >k and n, > n; for k> 1.
Let us now define a sequence y with Dy = Da by the formula y (k) = n,.
Then, of course, a = By, and a < f.

Since the relation < is equivalent to the set-theoretic inclusion of
the images, (S, <) is, obviously, a partially ordered set.

PRrROPOSITION 3.2. If a < B, then there exists an element & in S such
that a = 4p.

Proof. As in the preceding proof denote by =, the positive integer
for which a(k) = f(n;). Define é as follows:
Dé = Npaxppayy D6 =N if Da = N,
J for j < (1),
0(J) =31 m+j—%k for B(k)<j<B(k+1) if k+1leDa,
or for j > B(k) if k+1¢Da.
Then 68 = a. Indeed, Dég = B~ '(Dd) = Da and also, for keDdB,
we have 68(k) = 8(B(k)) = n, = a(k).

The converse of this statement does not hold as is shown by the
following example where the sequences are given by their images:

Example 3.1. Let If = {1,2}, I = {2, 3,4}, and a = 8. Then
Ia = {2, 3} and, consequently, Ia ¢ If and o < B.

PRrOPOSITION 3.3. The element 0 is the smallest and ¢ is the largest
element of S.
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Proof is obvious.

Proposition 2.5 implies immediately the following

PROPOSITION 3.4. The idempotents form a well ordered chain with
respect to the order <. The order type is w-+1. We have ¢, < ¢, if and
only if m < n.

ProrosITION 3.5. Every set M < S has the least upper bound and
the greatest lower bound. Consequently, (S, <) i8 an absolute lattice with
largest and smallest element.

Proof follows immediately from proposition 3.1.

We denote the least upper bound, called join, of the set M by \/ M
and the greatest lower bound, called meet, by AM. If M is an indexed

family M = {a;|t<T}, we also write \/ a; and A «a;, respectively. In
teT teT

the finite case also a; V... va, and a; A ... A a,.
Obviously,

(3.1) INVVg=Ulgy, IAaq=/)I1q.

teT teT teT teT

PROPOSITION 3.6. Operations of join and meet are left-distributive with
respect to the semigroup multiplication:

(3.2) B(V a) =V (Ba), B(Aa)=A (Bay).
teT teT teT teT
Proof.

Iﬂ(\/a,) = ﬂ(I\/ae) = ﬂ( UIa,) =UBUa) =UIPa) =1V (Bay).
teT teT teT teT teT teT

In the case of the meet the proof is similar, but we must use the
fact that g is a one-to-one mapping in order to be able to conclude that

ﬂ( N Iat) =M Aay).
teT teT

The following examples show -that there is no right-distributivity
even for joins and meets of two elements:

Example 3.2. Let Ia, = {1, 3, 5}, Ia, = {2, 4, 6} and I = {2, 3}.
Then I(a, Va,) ={1,2,3,4,5,6}, a; Va, = ¢4 and (e, vay,)f = . On
the other hand, Ia,f = {3, 5}, Ia,f = {4,6} and, hence, I(a,f Va,p)
= {3,4,5,6}, (a18) A (a:f) # (o Vaz)f?-

Example 3.3. Let a, = ¢4, Ia, = {4,5,6} and 8 = ;. Then a, A a,
= a, and (a; A a;)f = a,f = a,. On the other hand, a,f = 8, a,f = a,
and (a,f) A(azf) =B Aa, =0.

For the idempotents the meet coincides with the product. Namely,
we have even a stronger result.

PROPOSITION 3.7. If a is an idempotent, then Iap = IanIf, and,
consequently, aff = a A B.
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Proof. Since a is an idempotent, thus an inclusion map, we have
Iafp = a(If nDa) =IanIf =I(aAPp).

The converse is not true as the following example shows:

Example 3.4. Ia = {1,2,5} and If = {3, 7,5} so that neither a
nor f are idempotent, but Iaf = {8} =IanIf = I(a A p).

Also the proposition will not hold if we assume that g is an idempo-
tent, not a.

Example 3.5. Ia = {4,5,6} and f = ¢;. Here we have a A =0,
but af = a.

However, we have the following

ProproSITION 3.8. If B is an idempotent, then D(aff) = Da n Df.

Proof. Daf = p~'(Da) = DB N Da, since B is the inclusion map of
D(B) into N.

It follows from proposition 3.7 that if a is idempotent, then af < g
and, therefore, there exists an element y¢S such that af = fy. That
sequence y can be specified to be an idempotent, and we have the fol-
lowing .

PROPOSITION 3.9. For every idempotent ¢« and every aeS there exists
an idempotent x such that a = ax. Namely, one can take x = tyq)-

Proof. By proposition 3.8, we have D(ax) = Da n Dx. By defini-
tion of », Dx = Dia = Da, because of (2.2). Thus D(ax) = Dwa. Since
both  and x are inclusion mappings on their corresponding domains,
ax = ta.

In particular, if both factors a and g are idempotents and a < B,
we have a A B = af = a. Consequently, the ordering < in the set S,
of idempotents coincides with the natural order of the band S,.

Because of (3.1), there is a simple relationship between the numerical
hcights of sequences and their join and meet.

ProrosiTioN 3.10. It s

nh \/ q; = supnhg;,, nh A @, = infnhg,.
teT teT teT teT

The situation with domains and thus with lengths is less simple.
ProposITION 3.11. It 48

nlV q = IUIatI = II(\/at)[,
teT teT teT
nl/\a¢=lmIat|=II(/\at)i.
teT teT teT
Proof. nl\/ ¢y = DV o = |I V q, and similarly for the meet.
teT teT teT

We need two more results.
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PrOPOSITION 3.12. If nlat = nlf:¢ and nha¢ = nhB¢ for every idem-
potent ¢, then a = f.

Proof. Suppose a # 8. Then either 1° Da 5 DB, say Da = DS,
or 2° the domains coincide, but there exists a number ke Da = Df such
that a(k) # B(k), say a(k) < f(k). In the first case nla < nlf, so nlae
# nlBe; in the second case nhay, = a(k) # nhfy, = (k).

ProproSITION 3.13. For every a and n < nla we have a(n) = nha,.

Proof. If » < nla, then neDa and Dat, = Da n N,, where n is
the largest integer in Da¢,. Consequently, a(n) is the largest integer in
Iai, and a(n) = nhae,. .

4. Replacing natural numbers by idempotents. The order isomorphism
between the natural numbers and the finite idempotents (see proposi-
tion 3.4) allows us to remove from the theory the extrinsic elements —
the natural numbers — and operate strictly within the set S. We define
the abstract length ala and abstract height aha of a sequence a as

(4.1) ala = A{teSo|at = a},
(4.2) aha = A {teSy|ta = a},

where S, is the set of all idempotent elements of the semigroup S.
The relation between the abstract length and height and the numer-
ical length and height is obvious.

PROPOSITION 4.1. The equations ala = 0, nla = 0,aha = 0, nha = 0,
a = 0 are equivalent; ala = ¢ if and only if nla = oo; ala =, if and
only if nla = n.

Also immediately from the definition one has

PROPOSITION 4.2. For every a, Da = D(ala) = I(ala), Ia = D(aha)
= I(aha).

We may replace numbers by finite idempotents of S and proposi-
tions 3.13 and 4.1 will allow to reconstruct the representation of elements
of S as increasing mappings of segments of the chain S,— {0, ¢} of the
form {teS,|¢ < ¢*} into S,. Namely, for every aeS, a can be considered
as a mapping of D*a = {teS,|t < ala, ¢ < ¢} into S, such that, for every
teSy,t #0,¢,

(4.3) a(t) = ahat.

5. The Boolean structure. Since a sequence a is entirely determined
by its image Ia, S inherits also the Boolean structure of the power set
P(N). Thus a complement a’ of a sequence a will be defined by the for-
mulae Ia' = N —Ia. '
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Together with the join and meet operations of section 3 this converts
the set S into an absolutely additive Boolean algebra with the smallest
clement 0 and the largest element e.

ProrosIiTION 5.1. The complement has the following properties:

(5.1) (a') = a,

(5.2) ava' =¢, and =0,
(5.3) (aB) = a'Vv(ap’),
(5.4) ap’ = a A (ap)".

Proof. (5.1) and (5.2) are simply the axioms of a Boolean algebra.
To prove (5.3) note that (aB) v(ef’') va' = a(f vVB') va' = (ae) va'
= a va' =g, and, further, (af) A((af’) vV ') = [(aB) A (ap’)] V[(aB) A d']
= [a(B AB")] V[(aB) A &'] = 0, since aff < a, and, therefore, (af) A a’ = 0.
This implies that (ef’) va' = (af)’.

To prove (5.4) it suffices to take the meets of both sides of (5.3)
with a.

It might be of some interest to notice that ¢,,,, = (int4,)’- Thus addi-
tion of natural numbers can be reconstructed in S, by the definition

(5.5) t+x = (V')
expressed in terms of the semigroup operation and complementation
only.

With the Boolean structure a Boolean ring structure is associated
in a known manner with the meet as-multiplication and the symmetric
difference a Af = (a A B’) V(a' A B), as addition.

ProprosITION 5.1. The semigroup multiplication s left-distributive with
respect to the symmetric difference a(fAy) = (af)A(ay)

Proof. By the definition,

(BAy) =alBAy) V(E Ay)]

= [a(B Ay)] V[a(f' Ay)] by (3.2)
= [(af) A (ay’)] V[(af’) A (ay)] by (3.2)
= [(aB) Aa A(ay)] Ve A(af) Aay] by (5.4)

= [(af) A(ay)'] V[(aB) A ay] = (afB)A(ay).
There is, of course, no right distributivity.
Example 5.1. Ia = {1,2,3}, If = {1, 5, 6}, and Iy = {3, 4}. Then
Iay = {3}, IBy = {6}, I(ayApy) ={3,6}, I(eAp)={2,3,5,6}, and
I(aAB)y = {5,6}). Thus-(aAB)y # (ay) A(By).
Properties expressed by propositions 5.1 and 3.6 can be summarized
as follows:

21 — Colloquium Mathematicum XXVI



322 ’ A. GOETZ

PROPOSITION 5.2. The set S is endowed with three binary operations,
the symmetric difference a Af, a group operation, and two multiplications
aff and a AB. (S, A, ) forms a nearring, and (S, A, A) forms a Boolean
ring. The mearring multiplication is left-distributive with respect to the
Boolean multiplication.
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