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1. Following Saxon [12], p. 153, we call a locally convex space Baire-
like (umordered Baire-like) if it cannot be covered by an increasing (arbi-
trary) sequence of nowhere dense absolutely convex subsets. Thus for
a locally convex space we have the following implications:

Baire = unordered Baire-like = Baire-like = barrelled.

Recently, Saxon [12] (p. 158, Example 2.2, and p. 157, Example 1.4)
showed that unordered Baire-like normed spaces need not be Baire and
that Baire-like normed spaces need not be unordered Baire-like, whereas,
on account of [1], p. 274, a metrizable locally convex space is barrelled
iff it is Baire-like.

It is our first purpose here to give some more simple examples. In
fact, Theorem 1 enables us to give examples of normed unordered Baire-
like spaces which are not ultrabarrelled (and hence not Baire). Recall
that, according to [10], p. 249, a linear topological space (X, ) is called
ultrabarrelled if a < B for every linear topology a on X which is g-polar,
i.e., has a base of neighbourhoods of zero consisting of g-closed sets. Further
characterizations of ultrabarrelled spaces may be found in [5], p. 295 ff.,
and [14], p. 10 ff. Clearly, if X is Baire, then it is ultrabarrelled. On the
other hand, ultrabarrelled linear topological spaces need not be Baire,
a8 the strongest linear topology on an infinite-dimensional linear spacc
shows. Furthermore, any strict inductive limit of an increasing sequence
of Fréchet spaces is ultrabarrelled (see [5], p. 297, Corollary 2), hence
barrelled, but clearly not Baire-like.

Our Theorem 2 provides examples of metrizable (and even normed)
ultrabarrelled locally convex spaces which are not unordered Baire-like,
and hence not Baire.

Summarizing, there seems to be no evident relation between “ultra-
barrelled” and “unordered Baire-like”, which is not surprising at all.
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In view of this, and the above-mentioned result of [1], we note that the
following characterization results from Corollary 3 of [4], p. 558:

A metrizable linear topological space X is ultrabarrelled iff it satisfies
the following condition:

Let (A™; i, m € N) be a double sequence of closed balanced subsets
of X such that

(a) AM™ < A™*) and A, + A, < AM™ (i, m eN),

(b) U {4™; m e N} is absorbent (i eN).

Then for every ¢ e N there exists m ¢ N such that A{™ is a neigh-
bourhood of zero in X.

In Section 3, we consider the space m,(.«/) of «/-simple scalar-valued
functions defined on a set I, where o is a o-algebra of subsets of I, equip-
ped with the usual supremum-norm. In addition to some known curious
properties of my( =) like those of being barrelled, non-Baire, etc., we prove
that it is not ultrabarrelled and contains no infinite-dimensional separable
barrelled subspace. For a special case I = N and & = #(N), the o-algebra
of all subsets of N, these results are due to N. J. Kalton and A. Pelezynski,
respectively (unpublished). The extension of Pelczyriski’s result to my(f)
requires no new techniques while our proof of the result of Kalton is entirely
different from the original one (cf. Remark 2). In fact, we prove a stronger
result: No infinite-dimensional subspace X of m,( %) admits a linear topo-
logy & stronger than the norm-topology such that (X, £) is either Baire
or metrizable and ultrabarrelled. We also give an alternative proof of
the main result of Batt et al. (see [2], Theorem 1) concerning summable
sequences in my( ). ’

We are grateful to Professor Kalton and to Professor Pelczynski
for the permission to use their results in this paper.

2. Let us start by observing that a locally convex space (X, &) is
unordered Baire-like iff it is barrelled and has the following property:

(*) Given a sequence (A, ; n € N) of absolutely convex closed sets cover-
ing X, some A, i3 absorbent (i.e., i3 a barrel in (X, &)).

Now, if £ o 5 are linear topologies on a linear space X such that
(X, &) satisfies (x), then so does (X, 5). In particular, this is certainly
the case where (X, &) is Baire.

It follows that any non-Baire barrelled space X which admits a strong-
er linear Baire topology will provide an example of a non-Baire unordered
Baire-like locally convex space. Such spaces really do exist, as was al-
ready shown by Robertson [10], and from the results in Section 7 of [10],
P. 255, we immediately have the following

THEOREM 1. Let (X, £) be a non-locally convex F-space (i.e., a metri-
zable complete linear topological space) such that the strongest locally convex
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topology ¢(&) weaker than & is Hausdorff. Then (X, c(&)) is a metrizable
(hence Mackey) unordered Baire-like locally convexr space which s not ultra-
barrelled. Furthermore, if (X, &) is locally bounded, then (X, ¢(&)) is normed.

The most simple spaces to which Theorem 1 applies are (as in [10],

P. 266) the classical sequence spaces l,, where 0 < p < 1, equipped with
the topology & defined by the F-norm

(tus m eNYpi= D) Il
neN
Then (,, |-1,) i8 & locally bounded non-locally convex F-space which
is continuously embedded as a dense subspace in (I, |-|,), and its dual
is identified in a standard way with [, the dual of (I,, |-|,) (cf. [3], p. 822).
Hence ¢(£) is simply the topology induced on I, by the norm |-|,, and thus

(Lpy I+11) is @ normed unordered Baire-like space which is not ultrabarrelled
(and hence not Baire).

THEOREM 2. Let (X, &) be an infinite-dimensional F-space which admits
a biorthogonal sequence ((%,, f,); n € N} such that

Z:=Y+Ilin{u,;neN}, where Y:= {xeX;f,(x) =0 for all n eN},

18 dense in X. Then (X, &) contains a dense subspace which is ultrabarrelled
but mot unordered Baire-like.

Proof. Let § be an ultra-filter on N such that {n} ¢ & for all n e N.
For A e let

E,:=Y+lin{u,;n¢ A}’ and E:= |J{E,; 4 eF}.

Clearly, E is a linear subspace of X containing Z, hence E is dense
in (X, &). Furthermore, F is the union of the sequence of closed hyper-
planes f;!(0)NE 3 E, whence E in its relative topology éNE is not unor-
dered Baire-like. Let 7 be the strongest linear topology on E such that
nnE, = EnE for all 4 €, i.e., (E, 7) is the linear inductive (or *-induc-
tive asin [6], p. 286) limit of the F-spaces (E,, énE ) (A € §). By Corol-
lary 1 to Theorem 3.2 of [5], p. 297, (E, 5) is ultrabarrelled. We are going
to show that n = £nE. Clearly, it suffices to prove n c {nE.

Let U be an 75-closed neighbourhood of zero in (E, ). We prove
first the existence of an open neighbourhood V of zero in (E, éNE) such
that VNnZ < U. Let (V,; » €N) be a base of the neighbourhoods of zero
in (X, &) satisfying V,., = V, (n e N), and assume that V,nZ ¢ U for
all » e N. Since for every r e N the space Y +lin{u,;n > r} is a closed
subspace of finite codimension in (Z, nNZ), we find inductively a partition
(I(k); k eN) of N into disjoint consecutive finite sets I(k) (k € N), a se-
quence (¥,; k € N) in Y, and a sequence (4;; ¢ € N) of scalars such that

Yot O hue V,\NU for all keN.
iel(k)
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Now let
M:=U{I2k—1);keN} and N :=J{I(2k);keN}.

& being an ultra-filter, either M € § or N € §. Consequently, there is
Ae@ such that V,NnE, ¢ U for all n e N which contradicts yNE
= éNE, . Thus there is an open neighbourhood V of zero in (E, {NnE)
such that VnZ < U. Since

Vn(ZnE,)" o VnE, for all A€,

we have V < U" = U, which proves that U is a neighbourhood of zero
in (E, §nE).

Theorem 2 applies especially when (X, £) is a separable Fréchet space,
since then in X there exists a biorthogonal sequence ((u,,f,);n €N)
such that lin {u,; » € N} is dense in (X, &) (a result of Klee, cf. [9], p. 118).
Thus, in particular, we may construct dense ultrabarrelled not unordered
Baire-like subspaces in every Banach space with basis. We do not know
whether or not the assertion of Theorem 2 holds for all infinite-dimensional
Fréchet spaces. (P 1031)

3. If o is an algebra of subsets of a set I, we denote by m,(.«) the
linear space of all o/-simple scalar-valued functions defined on I; v denotes
the topology induced on my( <) by the usual supremum-norm ||-|,. If &
is infinite, then (m.,(.p{), r) is easily seen to be non-Baire, and thus not
complete. If o/ is a o-algebra, then, as in [12], p. 1567, Example 1.4, one
proves easily that (m,(«), v) is barrelled.

For the proof of Theorem 3 we use the following two lemmas, wherecby
we write card(4) for the cardinality of the set A.

LeMMA 1. If X 18 a linear subspace contained in
X, := {x e my(); card (z(I)) < n},

then dim X < n.
Proof. Suppose that this is not true and take any y € X with

card (y(I)) = m := max{card (2(I)); z € X}.
Since dim X > n > m, there exists z € X such that, for some ¢ € y(I),
card(z (y“(t))) > 2.

Then taking ¢ > 0 sufficiently small and setting x : = y + ¢2, we have
card (z(I)) > m and z € X, which is a contradiction.

LEMMA 2. If # s a subalgebra of o/, then my(#) is a closed subspace of
('m'o(d ) T)'
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Proof. Take any non-zero z € my(#) and write it in the form

m
3

z =2 iXay
i=0

with pairwise disjoint A; e &, t; # ; for ¢ # j, and ¢, = 0. Let
a:= min {jt;—]|; ¢ # j},
and then choose any y € my(%£) such that ||z —y|, < a/2; say

n
Yy = Zskak’
k‘=-0
where B, are pairwise disjoint members of %, s, # 8, for k # I, and 8, = 0.
If B,nA; # O for some ¢ and %k, then B, < A;. Otherwise, for some
j # 1 we would have B,NA; # @, and hence

8 —%l<a/2 and |[8,—%| < a2,

so that [|¢;—?] < a, which is impossible. It follows that each A; is the
union of a subsequence of B,, B,, ..., B, 8o that 4; e %, and thus z is
#-simple. '

THEOREM 3. Let s/ be an infinite algebra of subsets of a set I. Then :

(a) No infinite-dimensional subspace X of my(f) admits a linear
Baire topology & which is stronger than tNX. Thus, in particular, no infinite-
dimensional subspace X of my(sf) admits an F-space topology & stronger
than N X.

(b) No infinite-dimensional subspace X of m,(sf) admits a melrizable
ultrabarrelled linear topology & which 8 stronger than tNX. Thus, in par-
ticular, no infinite-dimensional subspace of my( ) is ultrabarrelled.

(c) Every separable subspace of (m,(),7) i8 of at most countable

dimension. Thus no infinite-dimensional separable subspace of (me( L), 7)
18 barrelled.

Proof. Our proof of (a) and (b) uses some ideas found in [13], p. 981,
and in [8], Section 4. For each n e N let

X, := {® e my(H); card (z(I)) < n}.

Suppose that X is an infinite-dimensional subspace of m,(sf) and &
is a linear topology on X satisfying £ o rnX. Since each X, is r-closed,
X,NnX is &-closed and, clearly, balanced for all n € N. Furthermore, we
have

X,nX+X,nX c X ,nX (neN)
and

X = U{X,nX;neN}.

8 — Colloquium Mathematicum XXXIX.1
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If £ is metrizable and ultrabarrelled, then by Corollary 2 of [6], p. 683,
there exists k¥ e N such that X, nX is a &-neighbourhood. This implies

X =U{m (X;nX);meN} c X,

hence dim X < ¥ by Lemmsa 1.

If £ is a Baire topology, we also infer that some X, NX is a &-neigh-
bourhood, which leads to the same contradiction. Thus we have proved (a)
and (b).

To show (c¢) it is enough to prove the first assertion, since it is well
known that a metrizable locally convex space of countably infinite dimen-
sion cannot be barrelled.

Let X be a separable subspace of m,(), and let D be a countable
dense subset of (X, vnX). Then there exists a countable subalgebra #
of o such that D < my(%#). Since my(#) is closed by Lemma 2, we have
X « my(#), and hence

dim X < dimm, (%) < N,.

Remarks. (a) Using similar methods, H. Pfister has independently
proved that (m., (21 ), r) is not ultrabarrelled and that every Banach
disk in m, (?(I )), provided with the relative product topology from K,
must be finite dimensional (unpublished).

(b) Kalton’s original proof of the fact that (mo (2(N)), ‘l') is not ultra-
barrelled is very ingenious 8o that we would like to present it here. We
shorten m, (Q(N)) to m,. Suppose that (m,, r) is ultrabarrelled and let
(F, |-]) be the F-space, constructed by Rolewicz and Ryll-Nardzewski
(see [11], p. 329 ff.), containing a sequence (z,; n € N) which is subseries
summable but not bounded multiplier summable. For each n € N define
T,:1,—~F by

To(t):= Dty (t = (ti;i € N) elo).
i=1

Then each T, is a continuous linear map of (I, ||‘|l.) into (&, |-]),
and (T,; » e N) converges pointwise on m,. Hence, by the Banach-Stein-
haus theorem for ultrabarrelled spaces (cf. [10], p. 250), (T,|my; n € N)
is equicontinuous. Since m, is dense in (I, ||-|l.), Wwe infer that (T,; n € N)
is also equicontinuous and converges pointwise on I,. This implies that
(.3 n e N) is bounded multiplier summable, which is a contradiction.

(c) Replacing the phrase “no infinite-dimensional subspace” in The-
orem 3 (a) and (b) by “no subspace X satisfying sup |card (z(I)); # € X}
= 00”, we may also prove the assertions of Theorem 3 (a) and (b) for the
space my(«/, E) of all o/-simple functions with values in & normed space
(E, II-1), provided with the topology induced by the supremum-norm.
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(d) It would be interesting to know the coarsest ultrabarrelled topo-
logy on m,(«/), stronger than z. (P 1032)

Finally, we present an alternative and somewhat shorter proof for
the main result of Batt et al. [2], Theorem 1, which — up to some variants
— was also obtained independently by H. Pfister (unpublished).

THEOREM 4. Let o/ be a o-algebra of subsets of a set 1, and let v and =
be the topologies on my(sZ) of uniform and pointwise convergence on I,
respectively. Let (x,; n € N) be a sequence in my( ). Then:

(a) If (®,; n € N) is bounded multiplier (BM) summable in (mq( =), x),
then dimlin{z,; n e N} < oo.

(b) If (w,;n €N) is subfamily (SF) summable in (mo(d), t), then
dimlin {z,; n e N} < oo.

Proof. We shorten my( ) to m,. We first show that (b) = (a). Suppose
that (z,; » € N) is BM-summable for = and define a linear map T: 1, — m,
by

T(t):= D' tw; (t=(4;6eN)ely),
i=1
where the sum is taken with respect to ». By the Banach-Steinhaus the,
orem, T: (I, |I'|lo) = (Mq, %) i8 continuous. Since 7 is #-polar, T: (I, || |-
— (my, 7) i8 continuous as well. It follows that (x,; » € N) is z-bounded)
and thus, again by the n-polarity of z, (s,2,; n € N) is SF-summable with
regpect to v for each (s,;n e N) el,. Choosing (s,;» € N) €l; such that
8, # 0 for all » e N, from (b) we obtain

dimlin {8,2,; » e N} = dimlin{z,; n e N} < oo.

Now suppose that (b) is false; then without loss of generality we may
assume the sequence (,,; n € N) to be linearly independent. Since (z,,; n € N)
is SF-summable, the formula

m(4):= D'z, (4 <N)
ned

defines a countably additive vector measure m: #(N)— (m,, 7). Then,
with X, as in the proof of Theorem 3, a result of [7], p. 46, Lemma 2,
implies m(4) € X, for some r € N and all finite subsets A of N, and we may
suppose that r is the smallest integer for which this holds. Choose a finite
subset A of N such that

r:i= Zmn
ned
assumes precisely r distinet values. Then, as |#,ll,—>0 (m — oo) and
(,; » e N) is linearly independent, there exists m e N\ A such that =,
assumes at least two different values on the set z~'(f) for some ¢ € z(I)
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and, at the same time, |z,,||,, i8 small enough to assure that

.
Tz, = 2 T,

ned v{m}

assumes at least r + 1 distinet values. This, however, contradicts the choice
of r.

We refer to [2] for various consequences of Theorem 4.
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