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1. Introduction. The main objective of this paper” is to answer a que-
stion which can be stated roughly as follows:

If a distributive lattice can be represented as a free product (= coproduct
in the category of distributive lattices with 0, 1) of a Boolean algebra and
a chain, then is this representation unique? Before giving a precise formu-
lation of this question we introduce some terminology and make some
conventions.

Since we are concerned with free products only in the category 2
of distributive lattices with 0,1 and (0, 1)-lattice homomorphisms, by
L = L,*L, we will always mean that L, L, and L, are in £, and that L
is the coproduct of L, and L, in 2. Furthermore, in order to avoid cumber-
some formulations, we will always assume that L, and L, are (0, 1)-
-sublattices of L and that the corresponding injections are the inclusions
L;,—~ L, 1 =1,2 However for technical reasons, we prefer to carry out
our arguments in the larger category 2’ of distributive lattices and lattice
homomeorphisms. So, with the exception already mentioned, all objects,
subobjects, etc., are to be taken in 2’. Thus, for example if we say § is
a subchain of B*(, where B is a Boolean algebra and C is a chain, then
necessarily B and C have 0 and 1 but S is merely a linearly ordered subset
of B*(. Finally, the symbols L, L,, L,, L', ete., C, C,, C,, (', ete., and
B, B,, B,, B’, etc., will always denote distributive lattices, chains, and
Boolean algebras, respectively. The precise formulation of the question
stated in the first paragraph is then:

(1) Does B*xC = B*(' imply C = C'?

Note that we require equality and not just isomorphism. This is
of course due to the conventions made above.

* The research and preparation of this paper was partially supported by the
National Science Foundation Grant GP 11893.
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In [1] it was shown that if L = B*(C = B*(' and if C is finite, then
¢ = ('. This generalized the uniqueness theorem ([2], Theorem 2.1) for
the chain of constants in a Post algebra and gave rise to the question
posed above. It is also an immediate consequence of a result in [1] that
if L =B*(C = B'+(’,then B = B’. On the other hand, there exist chains ¢
and €’ in £ with the property that BxC = B*(C’ but C # C’'. We therefore
consider the class & of all chains ¢ in 2 such that B*(C = B*(’ implies
¢ = (' for every B and every (’ (the class & was first introduced in [1]).
The main results of the present paper are:

(i) If L = B*C = B*(’', then B = B’ and C and (' are isomorphic
(Theorem 1).

(ii) A chain C belongs to & if and only if C has 0,1 and C is rigid
(Theorem 6). (A chain is rigid if it has no automorphisms but the identity
map.) The complete answer to (1) is then given by

(iii) If L = B*C, then this representation is unique if and only if C has
0,1 and either B = 2 or C is rigid.

In order to obtain these results it appears necessary to give some
characterization of rigid chains. In particular a sufficient condition for
a chain to be rigid is that each convex subchain has a least or greatest
elenient (see the remark after Theorem 3). This condition, however, is
not necessary and a suitable counterexample is provided.

Many of the results obtained here carry over to the case where the
Boolean algebra B in L = B*( is replaced by an arbitrary distributive
lattice in 2. We will consider generalizations of this type in the last section.

2. Preliminaries and a fundamental result. We will need the following
facts; the first is well known and the second was proved in [1].

(2) L =L,+L, if and only if L, U L, generates L and for a,, b,eL,
and a,, byeL,, a,a, < b,+b, implies a, < b, or a, < b,. '

(3) L = B*( if and only if each xe¢L can be uniquely represented
in the form x = Y a;¢;,, m>1, where {c,,...,¢,} = 0, {a,...
i=1

vy Band 0 =, <6< ... <¢py 1 =ay,a,>...>a,>0.

Our first theorem is crucial to our main result (Theorem 6) and is
of interest in itself.

THEOREM 1. Suppose L = B*(C = B'*x(C’. Then B =B’ and C is
isomorphic with C'. Moreover, an isomorphism f: C — C' can be chosen such
that f(x) < x for each xeC.

Proof. The fact that B = B’ follows immediately from a result
that was proved in [1] and which states that if L = Bx*(, then B is the
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center of L. Now each zeC, z # 0, can be uniquely represented in the
form

n
(4) @ = Ybo, n>l,
i=1

where {c,,...,c,} =, {by,...,b,}s B,0<¢;<...<¢, and 1 =20,
>by,>...>b,>0.

Indeed, if in (3) « # 0, then m > 2 and we have r<¢;+a,+ ... +a,,
= 0+ a,, s0, by (2), a, =1 and therefore

m

x = Zaic,-,
i=2
where m>2,1 =a,>...>a, >0 and 0<c¢,<...<¢,. Now define
f: C—>C' as follows f(0) = 0 and for # # 0 with unique representation
4), f(z) = c;. Obviously, f(z) < = for all zeC. We will show that f is an
isomorphism. Let x,yeC ~ {0} where the unique representation of « is
given by (4) and the unique representation of y by

m
y = Zb}d}, m>=1,
j=1

where {d;,...,d;} < (', {b;,..., b} < B, 0< d;<...<d,, and 1 = b;
> by >...>b, >0.
Suppose first that x < y and m > 2. Then

<b o <e<y<d+(by+ ... +b,) =d;+b,.

But b, #1 so by (2) ¢, <d;. If m =1, then we have immediately
¢, < d; and thus in either case f(x) <f(y). Next, suppose f(z) < f(y) and
x<y. Then y < x and hence f(y) <f(z), so ¢; =f(®) =f(y) = d;. If
n>2, then x < e, + by = d;+ by = byd;+b, < y+b,. But z K 9,50 b, =1,
a contradlctlon For n = 1, we have immediately the contradiction z < y.
It remains to show that f is “onto”. Let yeC’, y % 0. Then y has the
unique representation

n
= Zbicu n=1,
i=1

" where {e1y..ye,} =0y {by,...,0,} =B, 0<e,<...<¢, and 1 =D,
>by,>...>b,>0. -
Again ¢, has the unique representation

m
’
= Qb m>1,
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where {¢,, ..., ¢,,} € O, {b), ..., b} € B, 0< e, << ...<cpandl =b
>b, > ... >b,, >0.Now if m > 2, then

y< e+ .. +e, <+ (by+ ... +b,) =c +b,.
But b, # 1, s0 y < e¢,.1f m = 1, then it is immediate that ¢, <y. On the
other hand, since b, = 1, we have b,c;, = b,b,¢, < b,c, < y. But b, # 0,
so ¢; <y. Thus, f(¢c,) = ¢, =y, completing the proof of the theorem.

3. Rigid chains. In thi$ section we will prove some results concerning
chains to be used later. Recall that a chain C is rigid if C has no proper
automorphisms. A subchain 8 of a chain C is convex if x,yeS, 2z¢C and
x <2< yimply zeS. We call an automorphism f of a chain C strictly increa-
sing (strictly decreasing) if f(z) >z (f(2) < z) for all zeC.

We also recall the definition of ordinal sum of chains. Let I be a chain
and {C;: ieI} a set of disjoint chains. Then the ordinal sum C = @ C,

el
of the set {C;: 7¢I} is defined as follows: C is the set-theoretic union of
the C,, i¢eI; and C is made into a chain by a < b in C provided that {a, b}
< O, for some i and a < b in C;, or a<C;, beC; and ¢ < j. Finally, v and o*
will, as usual, denote the first infinite ordinal and its dual, respectively,

LeMMA 2 (cf. [3]). An automorphism of a convex subchain of a chain
C can be extended to an automorphism on C.

Proof. Let f be an automorphism on a convex subchain § of C.
Define g: C — C by g(x) = f(x) for xe8 and g(x) =z for x¢8. Using the
convexity of § it is routine to verify that ¢g is an automorphism.

The basic result on rigid chains that we will prove can best be stated
in the following form (cf. [3]):

THEOREM 3. For a chain O, the following conditions are equivalent:
(i) C is not rigid.
(ii) C has a non-void convexr subchain S which has a strictly increasing
(decreasing) automorphism.
(iii) C has mon-void convex subchain T such that T = @ T,, where

n?
new*+ o

{T,}icwr o 18 a set of isomorphic subchains of C.

Proof. (i) —» (ii). Let f:. C — C be a non-trivial automorphism. With-
out loss of generality we may assume that there exists a ¢ eC such that
f(¢eo) > ¢, (otherwise take f~'). Setting f°(¢,) = ¢,, observe that for integers
m,n with m < n, f™(¢,) < f*(c,). Let

S = {xeC: f(c,) <®< f*e,) for some integer n}.

~ Now o)) < ¢y < fi(cy), s0 8 #@. To see that S is convex, sup-
pose z,yeS, zeC and z <z<y. From the definition of S, there exist
integers m and n such that

file) <@ <fi(e) and f™(e) <y <f™ (e,
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SO
ffle<zr<z<y< fm-H(co)-

Thus there is a greatest integer p with the property that f”(¢,) < z and
a least integer ¢ such that z < f%(¢,). By the definition of p, z << f**'(e,),
so by the definition of q, ¢ < p+1. But ¢ < p+1 implies ¢ < p, so

2 < f(ey) < fP(60) < 2.

Hence ¢ = p+1 and so zeS. If f"(¢)) <& < f**'(c,) for some n, then
1 (eo) < f(w) < f*1%(¢,) which shows that f|S maps 8§ into itself and also
that f|S is strictly increasing. Finally, if f"(c,) < < f*"'(¢,), we have

7 eo) < f7H@) < f(eo) 80 f N (w) el
and hence f|S is’ the desired automorphism on 8. (Note that f 'S is
a strictly decreasing automorphism on 8.)
(ii) — (iii). Suppose ¢ is a strictly increasing automorphism on 8.
Pick an element c,e¢S such that g(e¢,) > ¢,. Using the same argument as
in the proof of (i) — (ii) it follows that

T = {xe8: g"(c,) < @< g""(¢,) for some integer n}

is a convex subchain of § and hence also convex in (. Clearly
T= U T,, where

new*+w

T, = {@eS: g"(co) < @< g™ (eo)} .

for each n. It is easily verified that if n, mew*+ o, n # m, then T, N T,
= @ and also that if xeT,,, yeT,,, m # n,then x < y if and only if n < m. It
follows that T = & T,.

new*+o

Finally, it is obvious that ¢|T, is an isomorphism of T, onto T, ,,.

(iii) — (i). By hypothesis there exists an isomorphism f,: T, - T, .,
for each new*+ w. It is immediate from the definition of ordinal sum
that f: T — T defined by f(x) =f,(z) if xeT, is a strictly increasing
automorphism. Finally, by Lemma 2, f can be extended to a proper auto-
morphism on C, proving that C is not rigid.

Theorem 3 is very often useful in the investigation of whether or
not a chain is rigid. Observe that it follows from part (ii) of this theorem
that in order for a chain C to be rigid it is sufficient that every non-void
convex subchain of C have a least or greatest element. Thus, ordinals
and dual ordinals are rigid. However, this condition is not necessary.
In fact, the next theorem exhibits a rigid chain which itself has no least
or greatest element.

THEOREM 4. Let {C,},.. be a sequence of dual ordinals with |C,,|
<|Chiyl for » =0,1,2,... and let |Co| = R,. Then C = @ C, is rigid.

new
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Proof. Suppose C is not rigid; then it follows from Theorem 3 that C
has a non-void convex subchain 7' such that T — @ T, where {T,}, 010

new*+w

is a set of isomorphic subchains of C. If T < @ C,, for some integer k > 0,
n=0

then, by Theorem 3, @ C, would not be rigid, but this is impossible since

n=0

@ C, is a dual ordinal. It follows that for each newm, there exists n’'ew,
n=0

n’ >mn, such that T N C,. # 0. Let n, be the smallest iew such that
T nC; #0 and let & be the largest element of C, . Since T' N Cn # O

for some n, > n,, we have by the convexity of T tha,t xeT. Hence there
"o

exists myem*+ o such that zeT, . It follows that T, _, = J C;. But
k=0

Th-1NnC, =0 for 0<k<n,—1, s0 T, ,<C, and thus

(3) [Tl < 1C,,|  for each new*+ o

since all the 7', are isomorphic. Now we claim that (J C,< T. Indeed,
n>ng

let zeC,, for some n > n,. Then there exists n’ > n such that T n C,. # 9,
say yeI' nC,,. But x <2<y since no<n<n' and z,yeT so, by con-
vexity, zeT. Thus

10n0+1| < | U Onl < |Tl = ] U Tnl?

n>ng new*+w
But |C, | = Re; 80 by (5)
gl < | U Tl <R [C, | <[Cyl, & contradiction.

neo*+w

As for examples of non-rigid chains we have the integers, the rationals
and the reals. For a less trivial example consider the Cantor discontinuum
C. Let § = 0 ~ {0,1} and suppose that each member of S is represented
by a ternary expansion. For n = 0, —1, —2,... let §, = {xe8: 2-3""?
<x<2-3"' and for n =1,2,3,... let 8§, = {weS: 2-37'+ ... +
+2:-3"<2x<2-3'+... +2:-3 "N Then § = @ §,and each S,
is isomorphic with ¢ ~ {1}. mewt o

4. Characterization of the class &. We will start this section by stating
a slightly modified form of a theorem proved in [1].

LEMMA 5. Let C be a chain with 0,1. Suppose C ~ {0,1} contains
a non-void convex subchain 8 such that S has a strictly increasing auto-
morphism. Then for each Boolean algebra B + 2 there exists a chain C' such
that BxC = B*(C' and C # (.

Recall the definition of the class &. This is the class of all chains C
with 0, 1 such that B*C = B*C’ implies C = ('’ for every Boolean alge-
bra B and every chain (’. Our main result can be formulated as follows.
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THEOREM 6. A chain C with 0, 1:_belongs to & if and only if C is rigid.

Proof. First suppose C is rigid, but that C¢ & Then there exist B
and C' such that BxC = B*(C’, C # C'. By Theorem 1, there exist iso-
morphisms f: ¢ — (' and g: ¢’ - C such that f(z) <« for each xr¢C and
g(z') < o' for each 2'¢C’. Since C =+ C’, there is an element x,eC such
that f(z,) < . Let kb = gof: € — C. Then h(z,) = g(f(®,)) < f(®o) < @,.
Hence h is a proper automorphism of C and so C is not rigid, a contra-
diction.

Conversely, suppose Ce &, but C is not rigid. Then by Theorem 3,
C contains a non-void convex subchain § which has an increasing auto-
morphism. It follows from Lemma 5 that C¢ &, a contradiction.

To return to the question of uniqueness, recall that the representation
L = B*(C is unique, if L = B*(C = B’*(’ implies B = B’ and C = ('.
The following corollary is now immediate from Theorems 1 and 6.

COROLLARY 7. Let L = B+*C. Then this representation is umique if
and only if either B = 2 or C 1is rigid.

Remark. It is clear that this corollary contains, as a special case,
the uniqueness theorem for Post algebras mentioned in the introduction.

5. Generalizations. In this section we will give a sketch of a gene-
ralization of the results we have obtained, by replacing the Boolean
algebra B in B*(C with an arbitrary object of 2. Since most of the proofs
are analogous to those in the previous sections, we will omit details.

First an inspection of the proof of (3), as it was given in [1], shows
that

(6) L = L,*C if and only if each xe¢L .can be uniquely represented in
the form '

m
Xr = Z‘aioi, m > 1,
t=1

where {c,;...,¢,} =0, {a),...,a,} S L, 0 =¢,<c¢y<...<¢, and 1
=@y, Gy >... >a, >0.

It is then possible to prove, using the same argument as in the
proof of Theorem 1: \

THEOREM 8. Suppose L = L, *C = L,*C'. Then C and C' are iso-
moiphic. Moreover, the isomorphism f: C — C’ can be chosen so that f(x) = x
for all z<C.

Remark. It is not true that if L, *C = L, *C’ then necessarily L, = L,
(indeed L'*L = L+L') but in the case of chains we have the next best
possible result.

THEOREM 9. If C,*C, = C,*C,, then C, = C; and C, = C;, where
{"’7.7.} = {1’ 2}-

3 — Colloquium Mathematicum XXIV.1
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Proof. We first show that if x<C, U C,, then z is join-irreducible
(e. < a+b, a,beC,*Cy=>2x<a or x<<b; or equivalently x =a-+b
=% = a or x = b). It suffices to show that 1f x,x;€Cyy y;eCyy 1 <1< M
and =< ) x;y,;, then & < x; Y;, for some i,. Indeed, since C, is a chain,

i=1

this is true if £ =0 or y;, =1 for all <. Thus suppose x =% 0 and

S ={i:y,#1} #0. But < ZyL and x # 0 implies Zyl =1, so

y; =1 for some i. Hence {1 2,..,n} ~8 #0 and we have
w<(zjl)+(2w) Now z # 0 and zy,;él,soq:<2x and we have
18 ¢S

that for some zoeS r< @ = x; Y; since y; = 1.

Thus each member of C; U C, is join-irreducible; dually, these ele-
ments are meet-irreducible (xeC, *C, is meet-irreducible if x> ab=> 2> a
or x> b for a, beC,*C,; or equivalently, x = ab= 2 = a or x = b). But
clearly any element of C,*(C, which is both meet and join-irreducible is
necessarily in C, v C,, so that C; U C, is exactly the set of elements
of C,*C, which are both meet and join-irreducible. In particular,
C,*Cy = C*0y, = C, UC, =0, UC,. Suppose C, ¢ C, and C, & C,,
then there exists we¢C; ~ €, and yeC; ~ C,. Since z,yeC,, we may
assume that # <y. Now xeC, since x¢C, and yeC,. Hence z = 0 or
y =1, a contradiction. Thus C, < C; or C,< (,. The result now
follows easily.

We now introduce the class £* of chains which are defined as follows.
&* is the class of all chains C such that L*C = L*(’ implies C = ('
for every L and C’. It is obvious that &* < &. Conversely, suppose Ce &
and C¢ &*. Then again applying Theorem 8 and using a similar argument
as in the “if” part of the proof of Theorem 6 (replacing B with a suitable L)
one can show that C is not rigid, whence by Theorem 6, C¢ &, a contra-
diction. Therefore we have the following theorem:

THEOREM 10. &* = & and thus Ce &* if and only if C is rigid.

Finally, we claim that Lemima 5 will still hold true if one replaces B
by any object L of 2 whose center is not the two-element Boolean algebra
(the reader may check this by a careful inspection of the proof in Theorem
4.2 in [1]).

The following corollary is then a generalization of Corollary 7.

CorOLLARY 11. (i) Suppose L = L,*C = L,*C' and C is rigid. Then
C=0.

(i) Suppose L = L,*C and suppose the center of L, i8 not the two-

-element Boolean algebra. Then there exists a chain C' such that L = L,*C
= L,*C' and C # C'.
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