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For a term p and a variable x let occ(x, p) denote the number of occur-
rences of x in p. An equation p = g is said ‘to be an even equation if for each
variable x, occ(x, p) is even iff occ(x, q) is even. p = q is said to be regular
(see [9)) if for each variable x, occ(x, p) # O iff occ(x, q) # 0.

For a given similarity type ¢ let T(g) denote the set of all terms of type
o with variables among x,, x,,.... Let N,: T(r) - T(2, 0) be a mapping
defined as follows: N, (e) = O for each constant ¢, N,(x;) = x; for each x;, and
No(f (@1 --» ) = (---((Ne(@) + Ne(@2))+ N (45)+ ...)+ Ne(q,) for each n-
ary (n>1) operation f and terms g, ..., g,, where 0 and + are 0- or
2-ary operation symbols, respectively.

€, and 3, denote, respectively, a 2-element join-semilattice with zero as
a constant, and a 2-element semigroup with addition modulo 2 and 0 as a

constant.

From Plonka [9] and [10] we know that if K is a variety of algebras of
type 7 in which an equation of the form p(xq, x;) = xo is valid, then the
variety described by the set of all regular equations valid in K coincides with
the class of sums of all fine Agassiz systems of algebras from K, indexed by
algebras from HSP(&,) with N, as naming functor.

The main aim of this paper is to show that the same result holds for
even equations after replacing HSP(E,) by HSP(3,).

A triple & = (B, (%,; be B), (hy; (b, c)e R)) is called a fine Agassiz system
(for general case see [2], [4]) if the following conditions hold:

(i) B is an algebra of type <2, 0), '

(il) (W,; be B) is a family of algebras of type t,

(i) R = B xB is the least transitive relation such that for every n-ary
(n=1) operation symbol f of type «t, if b,,...,b,eB and b
= N,(f)u(by, ..., b,) then (b;, b)eR for all i,

(iv) (hye; (b, )€ R) is a family such that h, is a homomorphism of 2,
into U, h,0h,. = h,; whenever (b, ¢), (c, d) are in R, and for each be B there
exists hoe B such that h,, is a monomorphism.
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The sum of an Agassiz system & (see [2], [4]) is an algebra U of the
type © with the carrier J(A4, x {b}; be B) and operations defined as follows:
for an operation f of type 7, if f is O-ary then fy = (fy,, Os) and if f is
n-ary (n = 1) then for all (a,, b,), ..., (a,, b,),

.ﬁ!l«al’ bl)a EERX) (am bn))
= (fa (M;5(ay), ..., by 5(a,)), b)  where b= N,(f)s(by, .., by).

By lim(I, K) we shall denote the class of all isomorphic copies of sums
of fine Agassiz systems (58, (Uy; be B), (hy; (b, ¢)e R)) where B is an algebra
from a class I of algebras of type <2, 0), and all 2,’s are members of a class
K of algebras of type r.

For an algebra B of type <2, 0) let *B denote an algebra of type t with
the carrier B and operations defined as follows: for an operation symbol f of
type 1, if f is O-ary then f,s =0y, and if f is n-ary (n>1) then for all

by, ..., ba€B, fiy(by, ..., by) = N.(f)g(by, ..., by
LemMmA 1. If the relation R in a fine Agassiz system ¥ is full then each

of hy's is an isomorphism and the sum of & is isomorphic to any of W, x*B
where be B.

Proof. By (iv) of the definition of .#, for each be B there exists bye B
such that h,,  is a monomorphism, and moreover hy,, 0 hy, = hy,, since R is

full. Hence, hy,, =1,, for each b. Again by (iv), hy Ohy = b, and hg Oh,,

= hy, for all b, c since R is full. Thus h,, is an isomorphism for all b, ceB.

For a fixed element b*eB define h: (J(A, x{b}; be B)—> A,« x'B as
follows: h(a, b) = (hy+(a), b) for all ac A and beB. As each of hy,’s is an
isomorphism, h is a bijection. Let f be an n-ary operation symbol of type T,
(ay, by), ..., (an, b)eU(A4, x [b}; beB) and let b= N.(f)g(by, ..., b,). If n
> 1 then notice that

h(f‘!l((als bl)s sy (am brl))) = h(fﬂb (hblb(al)s "'s-hb"b(au))’ Nt(f)ﬂl(bl’ AR bn))
= (e (foy (s, (@1), -, Bop (@), Ne(f)a by, .., b))

= (f\llb-(hblb‘(al)’ LERE) hb,,b‘(an))aj;s(bl’ LERE bn))
= fupe xrg (B(@y, by), ..., h(ay, b)),

else

h(quos, 0y) = (hogb‘ (fuo m)’ Om) = (fmbu 0g).

Thus h preserves all operations, and consequently it is an isomorphism.
Notice that the above lemma is also true for an arbitrary fine Agassiz
system.
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Denote by Even(r), where t is a similarity type, the set of all even
equations of type 7. For a class K of algebras of type 1 let Eq(K) denote the
set of all equations valid in K. Instead of Eq(K)~Even(r) we shall write
Even (K).

ProprosiTION. For a variety K of algebras of type t the following
conditions are equivalent:
(i) Eq(K) = Even(K);
(i) lim(HSP(3,), K) = K;
(iii) lim({3,}, K) = K;
(iv) 3, is in K.

Proof. (i) = (ii) Assume that Eq(K) = Even(K). Proposition 3 in [2]
says that p = ge Eq(lim(l, K)) iff p = ge Eq(K) and N,(p) = N,(q)e Eq(I) for
each equation p = q of type  and a class I of algebras of type <2, 0). Notice
that N,.(p) = N.(9eEq(HSP(3,)) iff p=gq is even. Therefore, for each
equation p =gq of type 1, p=qekEq (lim(HSP(32), K)) iff p=qeEven(K).
Hence, lim(HSP(3,), K) = K. Thus (i) implies (ii).

(i) = (iii) It is obvious.

(i) =>(iv) It immediately follows from the observation that *3, is
isomorphic to the sum of the following fine Agassiz system
(32, (Ta; a€ {0, 1}), (hy; a, be {0, 1})) where I, and T, are trivial algebras
of type .

(iv) = (1) Assume that *3, is in K. It suffices to show that
Eq(K) < Even(K). Let p =qeEq(K) and suppose that p=gq is not even.
Then p = ge Eq("3,) \Even(K). Hence there exists a variable x;, occurring in
p or in g, such that occ(x;, p)—occ(x;, q) is odd. Then v(p) #v(q), a
contradiction, where v is an assignment in *3, such that v(x;) = 1 when j =,
and v(x;) = 0 otherwise.

For a set X of equations of type t let Z* denote the class of all algebras
of type t in which every equation from X is valid. Let ‘HSP(3,) denote the
class of all algebras of the form "8, where Be HSP(3,). Observe that *B
becomes a well-known structure, namely an n-group, whenever t consists of
exactly one operation whose arity equals n (see [1]).

LeEMMA 2. Let t be a similarity type having an operation with arity at
least two. Then "HSP(J3,) is a variety and Eq(*HSP(3,)) consists of all even
equations of type . Moreover ‘HSP(3,) is a minimal variety.

Proof. To prove the first statement it suffices to show that "HSP(3,)
= (Even(1))*.

c: Since "HSP(3,) = lim(HSP(3,), ) where T is the trivial variety of
type 7, then by Proposition 3 from [2] (see the proof of Proposition above),
*HSP(3,) < (Even(1))*.
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2: Let Ae(Even(r))*. We need to show that A=V for some
Be HSP(‘%z)

Case 1. There exists an even-ary operation of type t.

Then there exists a term p(xq, x,) of type T such that occ(xg, p)
= occ(x,, p) and occ(xy, p) is odd.

As p(xq, Xo) = p(x,, X,) is even, we may define an algebra B = (4,
+, 0) where 0 = py(a, a) for a certain ae A4, and a, +a, = py(a,, a,) for all
a,, a, € A. Since the following equations: p(p(x,, x,), x3) = p(x;, p(x2, X3)),
p(xy, X3) = p(xX2, X;), p(xy, p(x2, X2)) = X1, p(x;, X;) = p(x2, X;) are even,
then by the fact that
(I HSP(J32) = {(x1 +x3)+x3 = X, +(x2+ X3), X;+X; = X34 X,

x] +0 = x,, X, +x, = 0}—*,
we have Be HSP(},). It remains to show that A =V. Since f(x,, ..., x,)
= p(...p(p(x,, X3)s X3)y -+ x,,) is even for each n-ary (n = 1) operation f of
type 1,
Jalay, ..., a) = Pm(---Psl(Pwr(ala as), az), ..., “n)

= Nt(f)!!(ah AR an) =j;.n(als cec an)

for all a,, ..., a,e A. Since f = p(x,, x,) is even for each 0-ary operation f
of type 7, fu=pula, @) =0q4 = f,. Then A ="V,

Case 2. Each operation of type t is odd-ary.

Then there exists a ternary term p(xo, X;, X;) of type t such that
occ(xq, p) = occ(x,, p) =1 and occ(x,, p) is odd.

Let 8 =(4, +, 0) be an algebra where 0 is a fixed element of 4 and
a, +a, = pylay, 0, a,) for all a,, a,e A. Since the following equations:

p(p(xla X4 Xz)’ X4 X3) = p(xl’ Xa5 P(xz, x4s X3)),
p(x1, X3, X3) = p(x2, X3, X1),  p(xy, X3, X2) = X1, p(Xg, Xz, X3) = X2
are even, then by the assumption that U is in (Even(r))* we have
p‘!l(p?l(al’ Os aZ)a Oa 03) = Pu (ah Oa pzil(aza 0’ 03)),
palay, 0, a)) = py(ayz, 0, a;), py(a;,0,0) =a;, pyla;,0,a)=0
for all a,, a,, aye A. So, Be HSP(J3,), by (I). But
f:)l(al’ ceey @) = p‘!l("‘p!l(pﬂ(al’ 0, aZ)’ 0, 03), R 0, an)
= N.(Na@r, ... a) = £, (@1, ... @),
for all a,, ..., a,e A, because
f(xl’ AR ] xn) = P(---P(P(xls Xp+1s x2), Xn+ 19 x3)a ceey Xpt s xn)
is even for each n-ary (n = 1) operation f of type r, and so U ="B.

Now we show that "HSP(3,) is a minimal variety.
Let p'(x,,..... X)) =¢'(x,.....x,)¢Even(r) and assume that occ(x,, p’)
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is odd and occ(x,, q') is even. Hence p(x,, x,) = q(x,, x,)¢ Even(tr), where
p(x,, x,) and gq(x,, x,) denote terms p'(x,, Xx,, -.., X) and q'(x,, X3, ..., X3),
respectively. We claim that x, =x, is a consequence of the set X
= Even(r) U {p(x;, x3) = q(x;, x;)}, which implies that x, =x, is a
consequence of the set Even(t) U {p'(x,, ..., X,) =4 (x,, ..., x,)}. When both
occ(x,, p) and occ(x,,q) are even, then x; = p(x,, X;) =q(x;, X3)
= q(x3, x;) = p(x2, x;) = x, are consequences of X If occ(x,, p) is even and
occ(x,, q) is odd then x, = p(x,, x;) = q(x,, X;) = x5, and so, in this case
our claim is true. If occ(x,, p) is odd and occ(x,, q) is even then, as before,
we have

Xy = P(xx, q(xy, xz)) = P(xl, p(x,, xz)) = X3.
In the remaining case notice that
x; = q(xz, ;) = p(x2, x;) = p(x2. q(x,, x;)) = p(x3. p(x,. X)) = X3,

completing the proof of the claim. From the claim it follows immediately
that (Even(7))* is a minimal variety, and hence such is also *HSP(3,).

For a variety K of type <2, 0), ‘K need not be a variety. In fact, the
class >HSP(3s) is not closed under subalgebras since the subalgebra of
3¢ generated by the set {2,6) is not of the form 8B for any
Be HSP(3y).

For varieties K and L of type t let K xL denote the class of all
isomorphic copies of algebras of the form U x B where Ue K and Ve L and
let K v Ldenote the join of K and Lin the lattice of all varieties of type .

THEOREM. If K is a variety of algebras of type t in which an equation of
the form p(xo, x,) = xq is valid (p(xq, X;) is a term on two variables) then
(Even(K))* = lim(HSP(3,), K).

Proof. It suffices to prove that (Even(K))* < lim(HSP(3,), K) since in
view of Proposition 3 from [2] (see the proof of Proposition above) we have
lim(HSP(3,), K) <(Even(K)}*. Morcover, we may assume that
Eq(K) # Even(K) since otherwise, by Proposition, the Theorem is true.

CLaiM 1. There exists a term q(xq, x,) of type t such that q(xq, x,)
= xo€ Eq(K)\ Even (K).

Proof. If p(xo, x;) = x, is noneven then as gq(x,, x;) we take
p(xo, x1)- So, let p(x,, x;) = x, be even. Denote by p'(x,, X,, X,) a term
obtained from p(x,, x,) by replacing a fixed occurrence of x, in p by x,. Let
r(Xigs oo x;,) =8(x;;, ..., x; ) be a fixed element of Eq(K)\Even(K) such

that occ(xg, r) = 0cc(xg, s) = 0. Then

P (Xos F(Xiys +ons X, ), $(Xj,5 s x;,)) = xo€ Eq(K)\ Even(K).
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If n=m=1and i, =j, then as q(x,, x;) we take p’(xo, r(x;,/X1), s(x; /%1)}
else  occ(xy, p'(Xo, F(Xiys -oos X ), S(Xj,5 ..., X;,))) is  odd  for some
ke liy, ..., in s --es Jm)s SiNCE 0CC(Xo, P'(Xo, 7 (Xiys o0y Xi ), S(Xjy, -5 X;,))) IS
odd and p'(xo, r(x;,5 ---» X; ), $(X;,, .., X; )) = X is noneven. Therefore, as
the term gq(xo, x;) one may take a term which we obtain from
P (xo, F(Xigs ooos X)) S(Xj,5 -2 xjm)) by replacing x, by x, and each variable
different both from x, and x, by x,.

Cram 2. (Even(K))* = K x"HSP(3,).

Proof. Let q(xq, X;) =X, be a noneven equation valid in K (see
Claim 1). Since q(xq, X;) = X, is noneven, either occ(xq, q) is even and
occ(x,, q) is odd, or both of them are odd, or both of them are even. Let
t(xo, x;) denote q(x,, Xx;) whenever occ(xo, q) is even and occ(x,, q) is odd,
q(xo, q(xo/Xy, x1/%0)) Whenever both of occ(x,, g) and occ(x,, g) are odd,
and q'(xo, q(xo/X;, X1/Xo), X;) otherwise, where ¢'(x,, X, X;) is the term
obtained from q(x,, x,) by replacing a fixed occurrence of x, in q(xq, x;) by
x,. Notice that occ(x,, t) is even and occ(x,, t) is odd, that is t(x,, x;)
= x, eEven(z). So, t(x,, x;) = x, e Eq(*HSP(3,)), by Lemma 2. Obviously,
t(xg, X;) = xoe Eq(K). Therefore the varieties K and °‘HSP(J3,) are
independent and K v ‘HSP(3,) = K x'HSP(3,), by Theorem 1 from [3].
But K v "HSP(3,) = (Even(K))*, by Lemma 2, which proves the Claim.

In view of Claim 2 and Lemma 1, to complete the proof it is enough to
show that the relation R from a given fine Agassiz system %
= (B, (W,; be B), (hy; (b, c)e R)), where Be HSP(3,) and U, e K for all b, is
full. Since p(xq, Xx;) is a term of type 7, there must exist an operation f of
type 7 with arity at least two. So, there exists a term g(x,, x,;) of type t such
that occ(xq, g) =1 and occ(x,, q) is even. Then N_(q)(xo, X;) = X, is even,
which implies that N_(q)(x, X;) = X, is valid in HSP(3,). Hence, N, (q)x(a, b)
= a, for each algebra Be HSP(3,) and all its elements a, b. Therefore, by (iii)
of the definition of fine Agassiz system, R is full.

Let &% (K) denote the lattice of all subvarieties of variety K.

CoRrOLLARY 1. Suppose that K satisfies the assumption of the above
Theorem and suppose that Eq(K) # Even(K). Then £ ((Even(K))*) = £ (K)
x 2 where 2 is a 2-element chain.

Proof. Since K and ‘HSP(3,) are independent (see the proof of
Theorem), then by Corollary 2.8 from [5], we have ¥ ((Even(K))*) =~ Z(K)
x Z(‘HSP(3;)). But, in virtue of Lemma 2, #(*HSP(3,))= 2. So,
Z((Even(K))*) = Z(K) x 2.

COROLLARY 2. Suppose that K satisfies the assumption of the above
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Theorem and let © be finite. Then K is finitely based iff (Even(K))* is finitely
based.

Proof. = Since in the term p from the assumption concerning K there
are two distinct variables, T must have an operation with arity at least two.
Therefore one may construct a ternary term q(xo, X;, X;) such that occ(x;, g)
is odd for all ie {0, 1, 2}. Hence q(xo, X,/Xq, X2) = X, and q(xo, X;/X;, X3)
= X, are even, so by Lemma 2, each of them is valid in "HSP(3,). Then
*HSP(3,) is a congruence permutable variety.

*HSP(3,) is a minimal variety (see Lemma 2) and it contains the finite
algebra *3,. So, "HSP(3,) is locally finite.

Due to McKenzie [7] we know that any minimal locally finite variety of
finite type with permutable congruences is finitely based. Hence "HSP(3,) is
finitely based.

In the proof of the Claim 2 we show that K and ‘HSP(3,) are
independent. Therefore, by Corollary 1 from [6] and Claim 2, if K is finitely
based then (Even(K))* is finitely based.

< It immediately follows from Corollary 1. .

CoROLLARY 3. There exists a not finitely based finite algebra of finite
type whose all equations are even.

Proof. From [8] we know that there exists a not finitely based finite
algebra U of type <2) in which equation of the form p(x,, x;) = x, is valid.
Then the variety HSP () satisfies assumptions of our Theorem. By Claim 2,
(Even(HSP(2M))* is generated by UAx® 3,. Obviously, each equation valid
in Ax<? 3, is even. So, ‘Corollary 2 completes the proof.
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