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0. Introduction. In this paper some ideals of subsets of the Cantor space
and the Baire space of infinite sequence of natural numbers are considered.
These ideals are defined in terms of infinite games of two players. It is natural
to regard sets which can be omitted in the infinite game as small sets.
Unfortunately, in the case of typical games such sets do not constitute an
ideal — the union of two sets for which the second player has a winning
strategy can be the whole space. But, if we consider a family of games with
some restrictions on movements of the players, and then we take sets for
which the second player has winning strategies in all games from this family,
then we obtain a o-ideal. Such a construction was made by Mycielski [M2].
We will investigate this ideal in Section 2. In Section 3 we will define three
other ideals. Their properties are investigated in the following sections.

My thanks are due to Jacek Cichon for drawing my attention to the
subject of the paper and for his help in constructing some examples.
Moreover, I would like to thank Janusz Pawlikowski for his help in
preparation of this paper and checking the correctness of some proofs.

1. Notation. We use the standard set theoretic notation. Continuum is
denoted by ¢, X =¢ is the set of all finite sequences of elements of X, and [X]®
is the family of all infinite countable subsets of X. The Baire space w® of
all infinite sequences of natural numbers and the Cantor space 2° are
endowed with the topology determined by basic neighbourhoods of the form
[6] = {x€eX®: 6 = x}, where 66X~ (X =w or X =2, respectively). If
A< X?° T< w, then A|T denotes the set

[xeXT: @yed)(x < y)}.

3° and V* denote the quantifiers “there exist infinitely many” and “for all
but finitely many”, respectively. For any ideal # of subsets of X we define

add(#) = min{|H#|: # < L&) H# ¢S},
cov(£) = min{|H#|: # < L&\ )H# = X},
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non(f) =min{|H|: H < X & H¢ s},
cof(#) = min{|H#|: # < S & (VAe F#)(ABe #)(A < B)}.
If X is a group and 4 is invariant under translations, then
cov(#) =min{|T}|: Tc X &A4eS)(|J{4+1t: te T} = X)}.

An old result of Rothberger says that if # and _# are orthogonal and invariant
under translations, then cov,(#) < non(#).
The set A = X is a c-Lusin set for an ideal # if

|[Al=¢ and (VBeS)(|AnB|<).
J° 1s the filter dual to # and
IJ*={A<cX: (VBeJ)(A+B # X)}.

K and L denote the ideals of first category sets and of Lebesgue null sets,
respectively. BOREL, BAIRE, MEASURE denote the families of Borel sets,
sets with the Baire property and measurable sets, respectively. BOREL(.#) is
the og-algebra generated by BOREL u .#.

2. Mycielski ideals. For K < w and S = X“ let I'y(S, K) be the infinite
game of two players in which both players choose the consecutive elements of
a sequence x € X“. The choice x(n) is done by the second player if ne K and by
the first player if n¢ K. The first player wins if and only if xeS. Now, let
A ={K,: 62~} be a system of infinite subsets of w such that

Kd = K¢.<o> v KU.<1) and Kat(O) N Kat(l) = g.
Put My » = {4 = X°: for every 6€2~“ the second player has a winning
strategy in the game I'y(4, K,)}.

2.1. PROPOSITION. There are systems X, X' such that the ideals My  and
My - are orthogonal.

Proof Let & = {K,: 6€2°%} and 4" = {K,: 0€2=°} be such that
K, nK,, #0 for every a,,0,€2%.
Let
A ={xe2® (Voe2<°)3ieK,)(x() = 0)}.
Then AeM, » and 2°\A €M, 4. Indeed, winning strategies for the second
player in the games I',(4, K,) may be described as “put always 1” and in the
games I',(2°\A4, K;) as “put always 0”.

For the rest of the paper we assume that the system ¢ is fixed and we
write M, instead of Wiy .

2.2. THEOREM (J. Mycielski, cf. [M2]). If X = w or X =2, then M, is
a a-ideal such that:
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(@) My is orthogonal to K N L;

(b) if Ae My, then there exists Be My N I19(X®) such that A < B;

(c) there exist ¢ disjoint closed subsets of X® that do not belong to M,;
(d) My, is invariant under translations.

In the next theorem we describe cardinal invariants of Mycielski ideals.
2.3. THEOREM. If X = w or X =2, then

(@) cov,(My) = w, (hence cov(Py) = add(My) = w,);

(b) non(M,) = ¢ (hence cof(My) = c).

Proof. (a) For any function xe X“ the set

{yeX®: 3o)(xIK, = yIK,)}

is of first category. So there exists a sequence {x,: a < w,} of elements of X*
such that (Va # B)(Vo)(x, K, # x4-K,). Let

A = {xeX*: (Vo)(AieK,)(x(i) # 0)}.
Clearly, AeM,. Note that if x¢(){4+x,: « <w,}, then
(Vo < 0,)30) (Vie K,)(x,(i) = x(i)).

Since there are countably many o¢’s and uncountably many o’s, there are
a, #a, and ¢ such that x|K_, = x,,|K, = x,,|K,. This gives a contradiction.
Hence | J{A+x,: a <w,} = X°.
(b) It is sufficient to note that if A < X“ and |A| < ¢, then A |K # XX
Mycielski asked in [M2] several questions about M,. The affirmative
answer to Problem P 649 was given by A. Iwanik (cf. [1]). The next result
solves both Problems P 647 and P 649.

2.4. THEOREM. There exists an analytic set Z < 2 such that if B2 Z is
a Borel subset of 2, then there is a Borel set B, = B\Z with B,¢,.
Consequently, Z¢ BOREL(9t,) and BOREL(M,) is not closed under the Suslin
operation .

Proof. Let X e(Z]\IT})(2X"). Let Z = X x 2*\K1e Z]\IT{. Now, if B2 Z is
a Borel subset of 2, then the set

A = {xe2K: Qye2\®)(x, y)¢ B}
is analytic and disjoint from X. Hence there exists xe2X¥\(X u A4). Then,
obviously, B, = {x} x2°** < B and B,¢WM,, B,nZ = 0.
For a given system X = {K,: €2~} one can consider the following
o-ideal: M) , = {4 < 2°: (Vo)(A|K, # 2¥°)}. This ideal is a proper subset of

M, . In the case of P » it is easy to give an affirmative partial answer to
Problem P 648:

2.5. PROPOSITION. If A€M, then there exists a perfect set P < 2% such that
P+PnAc {0}
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Proof. Let AeM,. For each i < w take an incompatible o; and choose
x;€ 2K\ 4|2K+ such that x;(n) =1 for some ne K, . Put

P ={ye2”: (View)(y|K,, = x; or y|K, = 0)}.
Unfortunately, we do not know whether Proposition 2.5 is true for M,, so

Problem P 648 remains open. Note that all properties of 9, stated above are
true also for IM,. So it is natural to ask: Are these ideals Borel isomorphic?

3. Other ideals. We shall study the following ideals of subsets of X*:

€y = {4 < X°: (VKe[w]®) (the second player has
a winning strategy in the game I'y(4, K))},

By = {4  X°: (VTe[w]®)(AIT# XT)},
Dy ={4 <= X 3Ff: X=°>X)(Vxe A)(Vn)(x(n) # f(x|n))}.

Note that 4 € B, if and only if for every infinite K = w the second player
has in the game I'y(A4, K) a winning strategy which does not depend on
movements of the first player. Moreover, B, is the intersection of all ideals

Y.» and @, is the intersection of all Mycielski ideals My 5. The ideal Dy is
the set of those A = X® such that the second player has a winning strategy in
the game on A in which the first player plays finite sequences of elements of
X and the second plays single elements. The ideal D, appeared implicitly in
Mycielski’s proof of the determinacy of analytic sets in nonsymmetric games on
o (cf. [M1]).

3.1. PROPOSITION. The ideals Dy, By, and €, are translatlon invariant
g-ideals and D, VP, = C, = M,.

3.2. THEOREM. D \P, # D.

Proof. Let 4 = {xew®: (V®n)(x(n) # max(x|n))}. Obviously, AeD,.
To prove that 4¢P, put T= {2n: new}. For yew” take x such that

xIT=y, x(2n+1)=1+4+y(2n+2)+max(x|2n+1).
Then xe A (and ye A|T).

3.3. THEOREM. There are perfect sets P and Q such that PeB, and
QeC,\B,.

Proof. Let T}, T, = 2=® be two infinite trees in which each finite branch
ramifies and on each level exactly one branch ramifies. In T}, 1 appears only at
points of ramification, in T, the value is the same between two successive points
of ramification. Let P = [T,] and Q = [T,]. Then P and Q are perfect sets.
Moreover, Pe B, and Q€C€,\B,. In fact, take K = {k,, k, ...}. If there exists
o€ T,, lho > k, such that a(k,) = a(k,) = o(k,) = 1, then we put f(k,) =1,
f(ky) =0 and f(k)=1 for i> 1. If such a ¢ does not exist, then we put
f(k}) =1 for i > 0. Obviously, f¢ P|K, hence Pe‘B,. The winning strategy for
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the second player in I',(Q, K) may be described as follows. If the first player
plays o, lho = k,, then the second in his first move puts an i such that no
extension of ¢ * i in T, ramifies at k,. In the second move, having ¢’ of length k,
the second player plays i such that ¢’ *i'¢ T,. Hence Q€€,. To see that Q ¢ B,
we consider K = {kg, k,, ...} such that all branches of length k;+1 ramify
before k;.,. Then Q|K = 2k,

3.4. PROPOSITION. If A < X® is a c-Lusin set for K or for L, then AeB,.

Proof. Let Ke[w]® and let K,, K, be two disjoint infinite parts of K.
Then Z = {x: x|K, =0}e KL, and therefore |Z n A| < c. Hence there is
a y e X*2 such that y’' ¢(Z n A)|K,. Putting y|K, = y’ and y|K, = 0 we obtain
yeAK. '

3.5. PROPOSITION. K*(X?)U *(X“) = By (X = w, 2).

Proof. This is a consequence of the fact that if Ae£*(X?), then
A|Te £*(XT), where Te[w]®, F =K or # =L.

4. Properties of D,.

4.1. THEOREM. (a) The ideal Dy has a Borel basis, Dy, = K(X®) and
32 = [2w]5w.

(b) cov(D,) = cov(K) and non(D,) = non(K).

(c) D, is orthogonal to L.

Proof. (a) For f: X=X let
A; = {xeX®: (V*n)(x(n) # f(xIn))}.
Then the family of all sets 4 ; constitutes a basis of the ideal Dy. Clearly, 4,€K.
(b) Bartoszynski (see [B]) proved that
(1) cov(K) = min{|X]: X € 0”& (Vyew®)@xeX)(V®n)(y(n) # x(n)},
20 non(K)=min{]Y|: Y< o® & (Vxew?)@ye Y)(3*n)(y(n) = x(n))}.

Now, if X = {x,: a < cov(K)} is a subset of w® realizing the minimum in
(1), then we put

A, = {xew®: (V°n)(x(n) # x,(n))}.

Obviously, 4,€D,, and {A4,: a <cov(K)} = w®. This shows that cov(D,)
< cov(K).
If Y¢D,, Y= o then obviously
(Vxew®)@ye Y) @) (y(n) = x(n).
Hence non(®d,) > non(K).
The inequalities non(D,) < non(K) and cov(D,) < cov(K) follow from (a).
(c) If 4, is the measure on w defined by 1,({n}) =2"®*"Y and 1 is the
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corresponding product measure on w®, then L is the ideal of sets of A-measure
zero. Let

A, ={xew® 3k)(x(k)=k+n)} and X =[){4,: new}.
Then A(A4,) < 27" and A(X) = 0. We shall prove that w“\X € D . The second

player can win if in his n-th move he puts k+n, where k is the length of the
sequence defined so far. Note that XeB,,.

Note that since D, does not satisfy ccc (see 4.1 (c)), the ideals D, and K are
not Borel isomorphic. Moreover, BOREL(D,) is not closed under the Suslin
operation &/ (the example for ¥, works).

We do not know any reasonable estimation of add(®,) and cof(D,).

5. Properties of ¢, and @,.

5.1. THEOREM. (a) non(€,) = non(P,) = | X|°.

(b) add(PBy) = cov(Py).
(c) If |X| =2 w,, then cov(Cy) = cov(By) = w,.

Proof. (c) Let | X| > w,. We choose an increasing sequence {X,: « < w,}
whose union is X and we put A, = X2. Then

A,eBy and (J{4, a<o,}=X°.

5.2. THEOREM. If X = w or X = 2 and cov(K) = ¢, then cof(€y) > ¢ and
cof(Py) > c.

Proof. Since proofs of both cases are similar, we give the proof only for
the ideal B,. Let us assume that cov(K) = c.

CLamM. If AePBy, E<c, K,e[w]® and f,: K,»X for a <, then
AulJ{/fi} x XK=t a < &} # X,
Let Ke[w]® be such that (Va < ¢)(K,\K| = w) and |w\K| = w. Let
feX®¥\A|K. For o < ¢ we put
Z,=({f} x XK) A ({f} x XK.
Then Z, are closed nowhere dense subsets of {f}x X“\X. Hence
{f}xXYNJ{Z,: « <&} #0 and AulJ{{f}x X\ a <&} # X,
so the Claim is proved.

Let us assume that {A,: ¢ < ¢} is a family of sets from PB,. We will show
that there exists a set Be P such that (V& < ¢)(B\A, # ). Let {K,: & <} be
an enumeration of [w]®. Inductively we define b,e X and f,e X" for { <.
Having defined b, and f; for { < { <¢, using the Claim we choose

beX\(A, v | {{fi} x X\ E<(}) and fieX"\{bJK,: &<}

We put'B = {bs: ¢ <c}. By construction, B\A, # @ and f,¢B|K,. Hence
Be PBy.
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Remark. Note that in the case of B, the assumption cov(K) = ¢ can be
omitted. In the case of B, the same assumption can be slightly weakened.

5.3. THEOREM. (a) €, and P, are orthogonal to K N L.
(b) (L. Newelski) cov(€,) = cov(B,) = add(B,) = w,.

Proof. (a) From Theorem 4.1 (c) it follows that € , and B, are orthogonal
to L. Now we put

H,,, ={0%0...0: cew~?&(k = 1 +n+max o) & (3k < lho)(dlke H,)},

ktimes

G,=|J{[¢]): c€H,}.

Obviously, G, are open dense subsets of w®, hence G = {G,: new}eK".
We shall prove that Ge€,,. Let K = {k,, k,, ...} e[w]®. For o: k;— w we put

¢(0) = 1000 * (k; 4y —k;) * k;.

Then ¢ is a winning strategy for the second player in the game I' (G, K). Note
that, in fact, GeB,,.

(b) Let {K;,: £ <¢,a<w,} S [w]® be such that

() if (& ) # (¢ B then K, # K p;

(i) (VK e[w]?)(Va < 0,)(3¢ < o) (K¢, € K).

Let fro: Keu— o (£ < ¢, a < ;) be a family of functions such that, for
ne K, fe.(n)is the first element of K, , greater than n. For every « < w, we put

A, ={x€2? T3 < )(frx € x)}.

Since for all Ke[w]® there is £ < ¢ such that K, , = K, and no extension of
ft. belongs to A,, we have A,€B,,. Moreover, | ) {4,: « < w,} = 0. Indeed,
let us assume that

x¢ ) {4, a <}

Then (Vo < @,)(3 < ¢)(fr, E x). Since there are uncountably many a’s, we
can find « < f < cand £, { < csuch that f; , U f; s = x and K,, and K,z have
the same first element. Let n be the first element of K., N K;,; for which
the next element of one set does not belong to the other set. Then we have
fea(n) = f(n) = f; 5(n), a contradiction.

5.4. LemMA. If GeII9(2°) is nonmeagre, then G¢G,.

Proof. Let us assume that G = (|G, < [¢] is dense in [¢], and G, are
open decreasing subsets of [¢]. Let k, = lho. We can choose ¢ (i =0, 1) in
such a way that lhe? = lho}, [¢}] = G,, o*i < ¢'. We put k, = Iho?. Having
defined i} for all i = (i, ...i,)€2" we choose ¢, (i = 0, 1) all of the same
length and such that

foi . .
[an"l&-l an+ls a:l*lg n‘-ll-l-
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We put k, = lhe¥'l,. Then sequences oi!'"» determine a winning strategy for
the first player in the game I',(G, K), where K = {k,, k,, ...}. Hence G¢GC,.

5.5. CorOLLARY. BAIRE(2®)n €, < K and BAIRE(2®) B, < K.
5.6. LeMMa. If FeII(2%), A(F) > 0, then F¢G,.

Proof. Let A be a product measure on 2°. Let us assume that F is a closed
subset of 2“ of positive A-measure.

CLamM. If 6€2=%, A(F n[0]) > A([c])/2, then there exist ,, o, such that
cxico;, lhoy=1lho, and A(Fn[o;])> A([o;])2.
Indeed, since A(Fn[o*i])>0 (i=0,1), we can choose points
x;€ F n [0 *i] at which the set F has density 1. Now we take ne w so large that
AF N [x;|n]) > A([x;InD)/2 (=0, 1)

and we put o; = x;|n.

Now we iterate the Claim to obtain a set Ke[w]® such that the first
player has a winning strategy in the game I',(F, K) (at the first step we take
x € F at which F has density 1 and choose n such that A(F n [x|n]) > A([x|n])/2).

5.7. CoroLLARY. MEASURE NG, < L and MEASUREN B, < L.

For AeC, and K e[w]® let STRy(A) be the set of all winning strategies
for the second player in the game I',(A, K), i.e.,

STR(A) = {f€2*"“: (Vxe A)@ne K)(x(n) # f(xIn))}.

58. LemmaA. If AeC,, Ke[w]® and STR(A) has the Baire property, then
STR(A)e K.

Proof. It is enough to prove that if G = 22" is nonmeagre and Ge IT9,
then G N STR(A) # O. Let us assume that G = ()| G, is dense in [o], where
o is a function from 2=™ into 2. We may assume that m = k, € K. Then for any
function f:2™—2 we find n = n(f) > m and a function ¢%: 2<"—2 such that
o*f < 0%and [69] = G,. Let k, € K be greater than all n(f)’s. We may assume
that n(f)’s are equal to k,. Assume that we have defined k,, ..., k; and
0fo.gr: 2" =2 (m=k,y i) forall r <iand f;: 2" -2 (m=k), j <r. We can
choose k;.,e€K and sequences o', ,:2<"—2 (m=k;.,) for fi:2" -2
(m=k,), j<i, in such a way that

. i—1 .
[0fo.rd S G and  of s #fi S 0o s

We put K' = {kg, k;,...}. Let ¢ eSTR,.(4). We can modify ¢ so that if
fi = @J2%, then o', ,, < ¢ for all iecw. Then obviously ¢eSTRy(4)NG.

5.9. CoroOLLARY. If {A,: a < x} = BOREL N €,, x < cov(K), then
_ U {4, a <»}eC,.
Proof. If A, are Borel, then STR;(4,)ell]} < BAIRE.
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By similar arguments one can prove the following

5.10. COROLLARY. The union of less than cov(K) sets from BOREL N B,
belongs to B,.

Corollary 5.9 could suggest that €,|BOREL is cov(K)-additive, but this is
not true. If non(K) < cov(K), and A¢K, |4| = non(K), then for every Borel
B 2 A we have B¢G, (because of Corollary 5.5) but A4 is a union of non(K)
singletons.

In the case of €, and B, we have no estimates of additivity and covering.
The facts above suggest that they can be large. Indeed, coverings can be greater
than w, (see Theorem 5.12 below). But an open problem is: Are there any
relations between covering or additivity of €, (°B,) and cardinal coefficients for
measure or category?

5.11. LemMma. (a) If AeC,, Ke[w]®, then there exists a strategy
¢ €STR(A) with (Vxe A)(A°neK)(x(n) # ¢(x|n)).
(b) If Ae By, Ke[w]®, then there exists ye XX such that

(Vxe A)(3A*neK)(x(n) # y(n)).

In [S], pp. 57-67, Shelah considered the Uniformization Property (UP) for
almost disjoint families of subsets of w:

{A,: a <x} has UP if for every system of functions f,: A,—2 there is
a function f: () {A4,: a <x}—2 such that for every o < x we have f, =*f.

He built a model of ZFC in which there exists an almost disjoint family of
power w, with UP. Obviously, in this model we have add(,) > w,. Hence

5.12. THeEOREM. CON(ZFC+ w, < add(%B,)).

Remark. By a slight modification of Shelah’s forcing, one can obtain
a model in which there is an almost disjoint family {A4,: & < w,} of subsets of
w with the following Strong Uniformization Property:

If f,: A,— w are functions such that f,(n) < 2%" for ne A4,, then there exists
a function f: () {4,: « < ®,} > o such that for each a < w, we have f, S*f.

Since winning strategies for the second player in the games I', (4, K) may
be regarded as functions from K into w with the property f(n) <2?", by
Lemma 5.11 we have a model with cov(€,) > w,.

I. Reclaw has recently observed that the Proper Forcing Axiom implies

cov(P,) =c.

REFERENCES

[B] T. Bartoszynski, Combinatorial aspects of measure and category, Fund. Math. 127 (1987),
pp. 225-239. ,
[I] A. Iwanik, P 649, R 2, Collog. Math. 34 (1975), p. 143.



168 A. ROSLANOWSKI

[M1] J. Mycielski, On the axiom of determinateness, Fund. Math. 59 (1966), pp. 203-212.
[M2] — Some new ideals on the real line, Colloq. Math. 20 (1969), pp. 71-76.
[S] S. Shelah, Proper Forcing, Lecture Notes in Math. 940, Springer-Verlag, 1982.

INSTITUTE OF MATHEMATICS
UNIVERSITY OF WROCLAW
PL. GRUNWALDZKI 2/4

50-384¢ WROCLAW, POLAND

Regu par la Rédaction le 6.1.1988,;
en version modifiée le 21.2.1989



