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Introduction. In the present paper we are concerned with the
condition of exchange of independent sets (EIS) studied in [1] and [6].
It has been proved that EIS is fulfilled in many algebras, e.g. in Boolean
algebras, Marczewski’s v*-algebras, Abelian groups (see [1]), semi-lat-
tices and algebras having at most six elements (see [6]). This condition,
however, is not satisfied in all algebras. There is a group having 729
elements and an algebra having 7 elements, which do not satisfy EIS
(see [1], [6]) and 729 and 7 are the minimal numbers for which this is
possible. So far, however, counterexamples contained algebraic constants.
In the present paper I give: (1) an example of an algebra without algebraic
constants which has 12 elements and does not satisfy EIS and a proof
that 12 is the minimal number for which this is possible; (2) a proof that
EIS is satisfied in all distributive lattices.

In this paper we will use the following abbreviations: constants and
operations for algebraic constants and algebraic operations; essentially
n-ary operations for n-ary operations depending on all variables.

1. EIS in algebras without constants having at most 11 elements.
Let A be an arbitrary algebra. We say that the condition of exchange of
independent sets (EIS) is satisfied in 2 if for arbitrary subsets P,Q, R
of this algebra the conditions

(a) P~ Q = 0,

(b) P v @ is an independent set,

(c) R is an independent set,

(d) @ generates R

imply the condition
(e) P v R is an independent set.
Let a(2A) denote the power of an algebra ..
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THEOREM 1. (i) For every number a > 12 there exists a semigroup P
without constants which does mot satisfy EIS, for which a(P) = a.

(il) If a(A) <12 and there are mo constants in A, then A satisfies
EIS.

Proof of (i). P has the form P = (4 v B v C;*), where

A = {a,b, c},
B = {<a, b>, {a,c), <b,c>, <b,a), <c,a), <c,bd},
C = {{a, a), <b,b), {cyc), dy,dsy...,ds} (n>0)

and the operation - is defined as follows:

if x,yed, then z-y = (x, ¥);

if zed,yeB v C, then z-y = {x, x);

if <u,v>eB, then (u,v)-z = {u, u);

if x¢C, then z-y = .

It is easily seen that the only non-trivial operations of this algebra
are -y and «-x, and, consequently, there are no constants in P.

Let P = {c}, Q = {a, b}, R = {<a,b)}. We see that conditions
(a)-(d) are fulfilled, but condition (e) is not, as

{a,b>c=<a,b) <a,b) = a,a),

though the identity -y = x-x does not hold.

Proposition (i) is thus proved. The proof of (ii) will be preceded
by a lemma.

LEMMA. If an algebra 2 is finite and the conditions (a)-(d) are satisfied
for some subsets P, Q, R, the set R being generated by the set Q only by means
of unary operations, then the condition (e) is satisfied.

Proof of Lemma. Let elements of the sets P,Q, R be denoted
by letters p, ¢, r with indices, respectively. We can assume that the set
R is generated by ¢ by means of unary operations h;(x) (tel). Because
of (¢) there are no constants among operations k;. In part 3° of the proof
of theorem 2 of [6] it has been proved that if b = h(a) and both sets {a}
and {b} are independent, then either the algebra is infinite or there exists
an index % such that the k-th iteration of the function k() is a trivial
operation, i.e. h*(z) = .

In view of the assumption of the Lemma such an index k; exists for
every function ;.

Now we shall show that every element of the set R is generated by
at most one element of the set ¢, and every element of the set ¢ gener-
ates at most one element of the set R. Indeed, if r = h,(q,) = h,(q;),
then %, (x) = hy(y) = ¢, which is impossible, since R, being independent,
does not contain constants. If, however, r, = hy(q), 73 = hy(q), then
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q =h51Y(r,) = h¥2~1(r,), whence, because of the independence of R, hi1~!(x)
= b2 Y (y) = constant, contrary to the independence of the set Q.

Let now two operations f and g be equal for certain arguments of
the set P v R. We thus have the equality

J(Pisy ooy Pmy iy ooy Tn) = G(Prycevsy Py Tryoeey Ta).
For every r; there exists exactly one element ¢; generating r;, and,

in view of independence of the set @, there is exactly one operation h;
such that r; = h;(¢;). Hence

f(pu cooy Pmy h’l(Ql)? seey hn(Qn)) = g(pu cooy Pmy hl(Ql)? ey hn((ln))-
But the set P v R is independent. Consequenﬂ‘y

f(xu oy @y By (Ya)y ooy hn(?/n)) = g(wu ooy Ty By (Y1)y -0y h’n(yn))'
Putting y; = h¥i~'(2;) in the last equality, we obtain

F(@yyooiy BinyReyeeey @) = G(Byyoeey Ty Reyoenyn)

Thus the functions f and g are identical, and since they have been
chosen arbitrarily, the set P v R is independent, q.e.d.

Remark. The supposition of the Lemma that 2 is finite is essential.
In fact, let A = ({mVn:m =1,2,...,n=1,2,3,5% hg, hy, hy, ...),
where h; with ¢ > 0 are unary operations defined by h;(z) = iz and b,
is a binary operation defined by

V3 if 2=1and y="V2,
ho(w,y) =1V6 if o=V2and y=1,
¢ in all other cases.

We set P = {1}, Q = {¥/2}, R = {2/2}. It is easy to check that
conditions (a)-(d) are satisfied (e.g. the independence of P o @ follows
from the fact that the only operations of at most two variables depending
on each variable are h;(x) with ¢ > 0 and h;(h(z, y)) with ¢ > 0, these
operations are one-to-one and their ranges are disjoint). Yet (e) is not
true, since hy(1,2V2) =1 whereas h,(1,V2) # 1.

Proof of (ii).. Let R be generated by the set ¢ by means of opera-
tions h; (¢eI). We can assume that each k; depends on all of its variables.
Elements of the sets P, @, R will be denoted by p, ¢, r, respectively. If
condition (e) does not hold, then there exist two different operations
flxyy ..., 2y) and g(x,, ..., z,), each being dependent on all its variables,
which satisfy the formula

(1) f(p1, coey Pmgs T1y oovy Tmy) = g(p;’ ”'7?;1177';7 '”7"';»2)1
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where m,+m, = m, n,+n, = n and all arguments of each of the func-
tions f and g are different, whereas a certain p; may be equal to a certain
p;, and a certain r; may be equal to a certain 7;.

Marczewski proved in [3] the inequality

n

(2) «® =101 = 3 (j) o,

where I is an independent subset of 2, |I| = n, w; is the number of essen-
tially j-ary operations, C(I) is the subalgebra generated by I.

In view of the Lemma it suffices to consider the cases when among
the operations h; there occur operations of two or more variables. We
take the notation 77 = P o @ and consider two cases.

1° Let one of operations h; be essentially n-ary, with n > 3. Hence
Q| > n, |T| >n-+1. If n > 5, then, because of (2),
a®) > ("} +n41 > 12,

which contradicts a(2) < 12. Let then »n be equal to 3 or 4. If |T'| > n+2,
then, because of (2),

n

a () > (”*2) +nt2>12.

Thus let |7| = n+1. Then [P| =1 and |Q| = ». From (2) it follows
that 2 has no essentially m-ary operations with 1 < m < n, distinet
from n-ary operations h;, except the identity operation. This also implies
that h; is symmetrical, i.e. no new operation is obtained by permuting
its arguments. Hence R = {h;(¢,, ..., ¢»)} and |P v R| = 2. But there
are no non-trivial unary or binary operations and (e) follows.

2° Let one of the operations h; be essentially binary; let us denote
it by - . If |T| >3 and the operation - were symmetrical then, by
Theorem 3 of [5], this algebra would have at least 2" —1 elements, and
if this operation were not symmetrical, then, by Theorem 4 of [5], the
algebra would have at least »2 elements. Both numbers are obviously
greater than 11. Thus let |T| = 3 and |P| = 1. Then |Q| = 2 and T con-
sists of the elements p, ¢,, ¢,. If the operation - is not symmetrical, then
the algebra 2 has at least 9 elements. If «(2) = 9, then by Theorem 5
of [5] all operations of at most three variables will be such as in a dia-
gonal algebra (see Theorem 5 of [5]). Since in this case the set B may
contain only at most three elements p, q,°¢,, ¢.°¢,, 80, if EIS were not
satisfied, it would be not satisfied within a diagonal algebra. This would
contradict a theorem that EIS is satisfied in diagonal algebras (see [6]).
Theorem 11 of [5] states that 10- and 11-element algebras with a three-
element independent set and a non-symmetrical essentially binary oper-
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ation - do not exist. Thus the operation - must be symmetrical. From
Theorem 1 of [5] it follows that, because of the lack of constants, there
exists an essentially ternary operation («-y)-2. The algebra has thus
the elements

Py @y 92 @179 Py DP°Qay  (¢1°¢)°D.

If there were no other essentially unary or binary operations in %
besides operation - and the trivial operation, then we had R = {q,-q,}
and the condition EIS would be satisfied. Indeed, each of the operations
f and ¢ in (1) has then to be either trivial or the operation - . However,
neither p-(q,-¢q;) = p, nor p-(¢,*qs) = ¢,°¢; can occur, since in view of
the independence of 7', this would yield z-(y-2) = », z-(y-2) = y-2. But
this is impossible, because the operation z-(y-2) is an operation of three
variables.

Thus it is enough to prove that there exists no such operation distinct
from - and the trivial operations. Suppose on the contrary that g(x) is
such a non-trivial essentially unary operation of 2. Because of (2) and
the inequality a(2) < 12 it had to be one such operation. But then the
operation g(z-y) would be a new essentially binary operation. Indeed,
let d = ¢,-¢,. The operation g(z-y) is symmetrical and essentially binary.
If g(x-y) = x-y, then, putting x = ¢q,, ¥y = ¢,, we would obtain g(d) = d,
contrary to the independence of the set R and the mnon-triviality of g.
In this case the algebra would have two different essentially binary ope-
rations and a non-trivial essentially unary operation, whence, by virtue
of (2), it would have more than 11 elements. If there existed in 2 another
essentially binary operation, let us denote it by -+ ; then in view of the
former considerations it should be symmetrical too. From (2) and the
inequality a() < 12 it follows that no other essentially unary or binary
operations exist in 2. Thus the operations -+ and - must be idempotent.
From Theorem 1 of [6] it follows then that there exist essentially ternary
operations

fi(@,y,2) = (z+9)+2, [f.2,y,2) = (2y)=.

Let fy(x, y¥,2) = (24 y)-2. We shall prove that the operation f; is
essentially ternary, and that the operations f,, f,,fs are all different.
Indeed, the operation f; may be completed to a quasi-symmetric one
by putting z = w4 v (see Marczewski [4]). Thus if the operation f; did
not depend on some of the variables z, y, 2z, then a quasi-symmetrical
operation (#-+v):(¥+v) would not depend on some of its variables,
which would contradict a theorem of Marczewski (see [4]).

Neither f, = f, nor f, = f; can be true, because each of them would
imply the identity of the operations + and - (by putting # = y).

If f, = fs, ie. (x-y):2 = (r+y)-2, then replacing z by |y and
then by z-y we get (z-y):(z+y) = (z+y) (z+y) =2+, (2y) (=Y)

Colloquium XV. 12
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= (x+9) (x'y), i.e. 2y = (x+vy) (2'y), whence 2+y = z-y, thus a con-
tradiction again. In such a case there exist in 2 two essentially binary
operations - and + and three essentially ternary operations f,, f, and f,.
Hence, considering (2), we obtain a contradiction with the inequality
a(”A) < 12. Since all cases have been considered the proof is complete.

2. EIS in distributive lattices. A distributive lattice is an algebra
(X; +, ), where each of the operations 4 and - is idempotent, sym-
metrical, associative and distributive with respect to the other operation,
and we have the formula z-(r+y) = 2. Marczewski showed in [2]
that a subset J = {a,,...,a,} of a distributive lattice is dependent if
and only if

(1) a,-l-...'aik.<_aik+l—|—...—l—aik+l for some 1}6{1,...,’”},

where k+1 <n and @i, # ai].j for j #j'.

THEOREM 2. Condition EIS is satisfied in distributive lattices.

Proof. Because of the distributivity of multiplication with res-
pect to addition, every algebraic operation of a distributive lattice-
has the form

f@yy ooy 2y) = wy+we+...4+wp, where w,= iy Liy" e Ty

s=1,2,..,k, 4e{l,2,...,n}, 4 <ip. forj<j'.

Let us assume that conditions (a)-(d) (§ 1) are satisfied. Because
of the finite character of independence, it suffices to consider the case,
where each of the sets P, @, R is finite. The elements of those sets will
be denoted by p, ¢, r, respectively. If the condition (e) were not fulfilled,
formula (1) could be written in the form

(2) PreeePmTrt ey K Pmyr1t oo+ Pmyst i1t oo+ oyt

In the presence of condition (d) and because of the form of algebraic
operations in a distributive lattice we can write

(3) = w,

=1
where w; is a product of certain elements qu of the set (. But the sums
and products of expressions such as the right-hand side of formula (3)
have the same form again. Hence, substituting the right-hand sides of
(3) for the rs in (2) and multiplying expressions within parantheses
obtained in this way on the left-hand side of (2) we get the formula

(4) pyveee P (W +wy4-. .. +’wk) < Pmirtee o+ Pmypst+ Wiyt oo+ Wiig.

If the elements r; did not- occur on the right-hand side of (2), then
replacing the sum of elements w; occurring. in parantheses on the left-
hand side of (4) by the product of all- w; and considering (1) we would
obtain a contradiction with the independence of the set P v . Similarly,
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if the elements r; did not occur on the left-hand side of (2), then replacing

each w; occurring on the right-hand side of (4) by the sum of elements

of the set @ occurring in (4) we would obtain a similar contradiction.

Thus the elements w; must occur on the right- and left-hands sides of (4).
If for every ¢ <k we had

(5) w; < w; for some j >k,

then it would be easily seen that »,-...'7, <7,.,+...+7,4¢, contrary
to the independence of the set R. Thus there exists such an 7+ < k for
which (5) does not hold. Let ¢ = 1. Thus in every product w; for j >k
there exists an element, say Qi which does not occur in w,.

If

(6) P1ee P Wy < Pipy1 + Pmyst Wipr+- oo+ Wiy,
then also
Preee P Wy < Prngrteee FPimgst Qg T Qg g

where elements occurring in the product on the left-hand side would
be different from elements occurring on the right-hand side, contrary
to the independence of the set P « . Formula (4) can be rewritten in
the form

Pr'ee e P Wi+P1 e P Woteo o +D1 oo P Wi
< Pmyrteoo+Pmys+ Wepr1+-. o+ Wiy

But the last condition cannot be satisfied, since formula (6) does not
hold. Thus formula (4) does not hold and formula (2) is not satisfied
either. This proves the independence of the set P o R.
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Added in proof. Professor Bjarni Jonsson, in a letter of June 17,
1966, to Professor Edward Marczewski pointed out that the EIS-property
is closely connected with the amalgamation property, as studied by
B. Joénsson (Universal relational systems, Mathematica Scandinavica
4 (1956), p. 193-208, Sublattices of a free lattice, Canadian Journal of
Mathematics 13 (1961), p. 256 - 264, and Eaxtensions of relational structures,
The Theory of Models, Proceedings of the 1963 International Symposium
at Berkeley, Amsterdam 1965, p. 146-157). By means of Jonsson’s results
the EIS-property can be obtained for Abelian groups, Boolean algebras
and distributive lattices.



