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ON THE STRUCTURE
OF EQUATIONALLY COMPLETE VARIETIES. 1

BY

DON PIGOZZI (AMES, IOWA)

The equationally complete varieties of groups, rings, semigroups,
and many other classical algebraic systems have been completely classified,
and their structure is well understood. Recently, these results have been
greatly improved so that we now have considerable insight into the struc-
ture of all complete varieties that are both locally finite and congruence-
permutable. This is a consequence of the work of a number of different
authors on para-primal varieties; see Caine [6], Clark and Krauss [7]-[9],
MacDonald [17], McKenzie [20], [21], and Quackenbush [28]. Similar
results for locally finite and congruence-distributive varieties had been
obtained earlier by Day [10]. In contrast, very little is known about
complete varieties that fail to be locally finite or have at least one of the
two congruence properties; cf. Bol’bot [4], [56], Evans [11], and Pigozzi
[22].

In this paper and its sequel [23] we shall show that, generally speaking,
this situation cannot be improved. If a complete variety is not required
to be locally finite or if it is so required, but is not influenced by some spe-
cial property like congruence-permutability or congruence-distributivity,
then its structure can, with some reservations of no great consequence,
be as complex as that of an arbitrary incomplete variety of the same kind.
This is demonstrated by constructing functorial isomorphisms between
members of a wide class of varieties, treated as categories in the usual
way, and subcategories of complete varieties. These functors turn out to
preserve many important algebraic and metamathematical properties, in
particular all Mal’cev conditions.

Our main result is contained in Theorem 1. We then apply it to
solve two open problems that have appeared in the literature; see Corolla-
ries 1 and 2 and the remarks preceding them.

In the following J¢ represents an arbitrary variety and % an equation-
ally complete variety. All unexplained terminology from category theory
comes from Mac Lane [18].
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‘A functor ® from . into & is forgetful if it coincides with the identity
function on arrows, and, for all A € Z,GA is a reduct of U, i.e., A is obtained
from A by disregarding some of its fundamental operations. A funector
¥ from o to £ will be called polyinjective whenever it satisfies the fol-
lowing three conditions:

(1) & is injective both as an object and arrow function, i.e., it is an
isomorphism between o and a subcategory of £.

(2) & as an arrow function preserves injections, i.e., for all A, B e A
and every homomorphism A : % — B, the homomorphism §h : FA — AB
is one-one whenever # is.

(3) There exist a forgetful functor ® from £ into o and a natural trans-
formation # from the identity functor J on ¢ into ® o § such that
7y : A - GFA is an injection for every A € A .

A variety A is wvariable-uniform, or regular, if, for each identity
T = o of X, every variable occurring in v also occurs in ¢ and vice versa.

THEOREM 1. Let X" be an arbitrary variety. Then each of the following
two conditions is sufficient for A" to be isomorphic to a subcategory of some
equationally complete variety &. Moreover, in both cases the fumctor that
establishes the isomorphism can be taken to be polyinjective.

(i) o has a null object; i.e., every member of X has a unique one-
element subalgebra.

(i) o 8 variable-uniform; in this case, if X is generated by a finite
algebra, then & can be taken to be locally finite.

In [23] it is shown that the following third condition can be added
to (i) and (ii):

(iii) X has a certain weak form of the amalgamation property, called
the flat amalgamation property by Bacsich [1], together with a& corresponding
weak form of the joint embedding property.

In this case, if X" is of countable similarity type, the complete variety
£ containing an isomorphic copy of X can in fact be taken to be a variety
of groupoids, or quasigroups, or any one of a large class of non-associa-
tive algebras. Moreover, the functor can be taken to have a right adjoint,
go that o is isomorphic to a coreflective subcategory of Z.

Before turning to the proof of the theorem we give some applications;
these results were announced in [19] and [25]. In [12] Fajtlowicz poses
the problem (P 644) whether or not every equationally complete variety
has the amalgamation property. Baldwin [2] proved that every variety
that is categorical in some infinite power does have the property. In
general however the answer turns out to be negative.

COROLLARY 1. There ewists an equationally complete variety & that
Jails to have the amalgamation property. &£ can be taken to be either congru-
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ence-permutable, congruence-distributive, or locally finite. However, if it
has either of the two congruence properties, it cannot be locally finite.

The last part of the theorem follows from Theorem 4.5 in [10] and
from Theorem 1 in [9].

Let & be a polyinjective functor from % into.£. Let ® be the forgetful
functor from % into 2 and » the natural transformation from 3 to® o §
such that 7y : A -GFYA is injective for every A € A.

Assume # has the amalgamation property. Let A, B, € € X and let
f:A—>B and ¢g:A —C be injections. Then, by (2), Ff: FA > FB and
Fg :FU - FC are also injective. Since £ is assumed to have the amalgama-
tion property, there exist D € ¥ and injections » : FB —-Dand k: FC - D
such that

(4) ho§f =ko §y.
The homomorphisms
(hong):B—->0GD and (kong:C 6D

are injective, and using (4) and the fact # is a natural transformation
we have

(hong)of =hoFfony =koFgong =(kong)og.

Thus X has the amalgamation property whenever £ does.

Since every member of £ has a member of X as a reduet, it is clear
that & satisfies every Mal’cev condition % does. In particular, & is
congruence-permutable or congruence-distributive if J" is.

Combining these results with part (i) of the theorem we see that in
order to obtain an example of a complete variety £ that is congruence-
permutable and fails to have the amalgamation property it suffices to
exhibit an arbitrary incomplete 2 with these properties which, in addition,
has a null object. But such varieties are well known. For instance, we can
take X to be the variety of rings without unit. We can also take various
special varieties of groups (see [31] and [32]). Similarly, to obtain an
example of a complete, congruence-distributive variety & without the
amalgamation property we can take X to be any variety of modular
lattices with a distinguished element that fails to satisfy the distributive
law (see [13]).

To get a complete variety % without the amalgamation property
that is locally finite it suffices to find an incomplete variety # without
the amalgamation property that is generated by a finite variable-uniform
algebra. We are not aware of an example of such a variety explicitly occur-
ring in the literature, but one can be obtained with little difficulty by a sim-
ple modification of a construction of Howie [14]; see also [15]. The key
lemma required is the following:
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LEMMA 1. Assume A = (A, ) i8 a finite semigroup and a,Gec A
any pair of distinct elements such that a fails to divide @ on the left in U, i.e.,
ax # @ for all x € A. Then W can be embedded in a finite semigroup € with
an element ¢ such that ca = a but ca # a.

To prove this assume U, a, and @ satisfy the hypothesis. Without
loss of generality we also assume that % contains an identity element e. Take
€ to be the semigroup of all transformations of A. The semigroup U can
be naturally identified with a subsemigroup of € by identifying each
b € A with the transformation that takes every x into bx. By hypothesis
@ is not in the range of (the transformation identified with) a. Thus there
exists a member f of € that leaves every element of the range of a fixed
while it moves a. Obviously, the conclusion of the lemma holds when
¢ is taken to be this f.

Take %A and B to be a pair of finite semigroups such that A is a sub-
semigroup of B, and A contains distinet elements a, @ such that a divides
@ on the left in B but fails to do so in YU. For example, A can be taken to be
a constant semigroup with three elements @, @, and d such that zy = d
for all #, y; B can be the extension of A by a single element b such that
ab = @ but b = br = d in all other situations.

Let € be a finite extension of oA, and ¢ an element of € such that
€ and ¢ together satisfy the conclusion of the lemma. Then there exists
no semigroup which is a common extension of both B and €. For suppose
one existed, then we would have cab = ab = @ and cab = ca # a, a con-
tradiction. Take X" to be the variety of semigroups generated by B and
€ together with the two-element semilattice. ) is obviously generated
by a finite algebra and is variable-uniform since the semilattice is. Clearly,
X fails to have the amalgamation property. This completes the proof
of Corollary 1.

The complete variety # in the corollary can also be taken to be a va-
riety of groupoids or quasigroups; this follows from the results of [23].
However, we know of no example of a complete, locally finite varicty
of groupoids that fails to have the amalgamation property. (P 1233)

Clark and Krauss ask in [7], Problem 2.6, if every complete, locally
finite variety % has a plain subdirect Stone generator, i.e., if there exists
an A € A such that every member of X is isomorphic to a subdirect power
of UA. According to Taylor [29] a variety is residually small if its subdirectly
irreducible members form a proper class. Obviously, any variety with
a plain subdircct Stone generator is residually small, so the following
corollary provides a negative answer to the problem of Clark and Krauss ().

(1) A solution to this problem was obtained independently by Brian McEvoy;
both solutions are based on the constructions of [24].
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COROLLARY 2. There exists an equationally complete and locally finite
variety that fails to be residually small.

Let X, 2,%,6, and 7 be as in the second paragraph of the proof
of Corollary 1. Let % € o be subdirectly irreducible. U is isomorphic
to a subdirect product of a system B;, ¢ € I, of subdirectly irreducible
members of #. Since ® is forgetful, it preserves direct products, so GFUA
is isomorphic to a subalgebra of a direct product of the &8B;. Hence, as
A is subdirectly irreducible and isomorphic to a subalgebra of GFA, it
must be isomorphically embeddable in some &®B;. In particular, |4| < |B,|.
This shows that, if & fails to be residually small, so does Z.

It is enough now to exhibit a finite variable-uniform algebra % which
generates a variety o that fails to be residually small. Actually, any finite
algebra which generates such a variety will do since we can then take
A to be any finite variable-uniform extension of it (cf. [26]). Examples
of finite algebras whose generated variety fails to be residually small
are well known, for instance, either of the two 8-element non-Abelian
group will do (see [30], Section 14.8). This completes the proof of Corollary 2.

By a result of Quackenbush [27] the variety of Corollary 2 must
contain infinitely many pairwise non-isomorphie, finite, subdirectly
irreducible algebras each of which generates the variety. But the functor
& we used to prove the corollary itself provides an explicit construction
of such algebras which are, moreover, simple. This gives another solution
to Problem 67 of Birkhoff [3].

Proof of Theorem 1. The two parts of the theorem require very
different constructions, and the last part of Corollary 1 would seem to
indicate that this difference is essential. We first prove part (i).

Let & be any variety with a null object. The desired equationally
complete variety & will, loosely speaking, be built within o itself using
the following simple idea. Consider an arbitrary equation

T =0,

where v = 7(v9, ¥4y ..., 9,_;) and o = o(vy, vy, ...,9,_,) Tepresent, as
usual, terms or polynomial symbols of the formal language of X°; the
list vy, v4,...,9,_, of variable symbols is assumed to include all those
which occur in either = or o. Let R be a new operation symbol of rank 4
and P, ..., P,_, new constant symbols. Consider the equations

(5) Rt(Pyy ...y Pp_))o(Pyy .oy Pp_))xy =2, Rzzxy =y.

Any such pair of equations where the symbols R, P, ..., P,_, are
all distinet from the symbols of the language of X is called a (local) dis-
criminating system for v = o relative to X. We usually suppress explicit
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reference to the variety J¢, relying on the context to make it clear. The
symbols B, P, ..., P,_, arereferred to as the basic symbols of the system (5).
Assume now that v = o fails to be an identity of #. A sequence
ay, ..., a,_, of elements of an algebra A € i is called a system of witnesses
to r =0 if
TH(Boy +eny Byy) F O (Bgy vvny By_y)y

where 7% and o¥ represent the polynomial operations over % naturally
associated with = and o. It is obvious that an algebra of o is a model of
a discriminating system for 7 = ¢ (or rather can be made into one by
interpreting the basic symbols properly) iff it contains a system of
witnesses to 7 = o. Thus, by adjoining to the (equational) theory of
X (that is, the set of all equations that are identically satisfied in all
members of /') a diseriminating system for every non-identity, in effect
we define a subvariety consisting of those members of o which contain
witnesses to all non-identities. This subvariety turns out to include the
essential part of X and, while not complete, constitutes the first step
of a recursive process which ultimately leads to the desired variety 2.
We now give the details.

In every member of o the element of the unique one-element sub-
algebra is denoted by the same symbol 0. Let @, be the theory of X
and for every n< o let @,,, be the theory axiomatized by the set of
equations obtained by adjoining to @, a discriminating system for each
equation not contained in @, (but in the language of @,). We must make
sure of course that distinct systems have no basic symbols in common;
observe that the language of ®,., is the extension of the language of
@, by all these basic symbols. Finally, let & be the class of models of the
theory

o=\ 9,.
n<o

If &, is consistent, so is @, ,. For as observed above any model of
@, , such as the free algebra, which contains witnesses for all non-identities
of &,, can be made into a non-trivial model of &, ;. Thus every @, is
consistent, and therefore @ must be consistent. @ is also complete. For
suppose T = ¢ i8 an equation in the language of @ but is not contained
in @. Then, for some n < o, T = ¢ is in the language of &, and v = o ¢ D,
so @,., and hence @ itself contains a discriminating system for = = .
Thus no consistent extension of @ can contain v = ¢; hence every consistent
extension is conservative. This shows that % is an equationally complete
variety.

Our next task is to define the polyinjective functor § from X into
£. In the following we let I be the set of operation symbols of the language
of &, and J the corresponding set for £. Notice that I = J, and J ~ I
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consists of all the basic symbols of the discriminating systems that were
adjoined to the theory of ¢ to define Z.

Choose an arbitrary non-trivial member U of #. For each B e &
let B be defined in the following way. The universe of B is the Cartesian
product B x A of the universes of B and UA. For each operation symbol
Q € I we define its interpretation Q%2 coordinatewise in the usual way:
Let » be the rank of Q. For all by,...,b,_, € B and a4, ...,a,_, €A,

stKbo, @)y eeey Kbyoyy @pyd) = <Qm(b07 ceey Opy)y Qa(%’ ey Gp_y))e

This makes sense of course since I = J. This definition can be summa-
rized succinctly by the equality

(6) 6FB = B x6U,
where ® is the forgetful functor from £ to o°. We must now define the

interpretations of the extra symbols in J ~ I. Let
T(Voy eoey V) = 0(Vgy ooy Vy_yq)
be any equation of type J that is not an identity of &, and let (5) be the
discriminating system associated with v = o. Take
(7) P¥® = (0,P)> for each k< n,
and for all <b;, a;) e BxXA withi = 0,1, 2,3 define

(8) R%B«bo, Aoy ey {bgy agy) = (by, Ra(aw ayy Ggy a3)),
where
i — 2 if a = <N(PY,...,P;_) and q, = H(PGy +eny Pa_y),
|3 otherwise.

Because of (6), B obviously satisfies all the identities of . Thus to
prove that B €. we must show that the identities (5) hold.

Using (6)-(8) it is an easy matter to prove by induction on the length
of terms that, for any term =x = =(vyy..., v,_;) of type J and for all
{bgy @)y eeey{bp_1ya, ;> €B XA, we have

“ﬁm(d’o’ @)y eeey {by_yy @p_yd) = <o, “sx(ao’ ceey Qp_y))

for some ¢ contained in the subalgebra of B generated by 0 and b,, ..., b,,_,.
Hence by (7) we have

9) P (PS®) = <0, TH(PY))y, ¥ (PF) =0, o°(P?),

where P%® = (P38, ..., P¥ ) and P* = (P¥,...,PX 5. Take = to
be the left-hand side of the first equation of (5). Consequently, for all
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{&oy 1)y Yo, Y1> € BXA We get
w8 ({&oy ®1)y {Yos Y1))
= R¥(<0, =(P")), €0, 6"(P")), (@, @1); Yo, ¥1)) DY (9)
= <wo’ Ru{"u(P‘L o'u(}—ﬂ)’ Ty, ?/1)> by (8)
= {Zoy &1 -

The last equality is a consequence of the fact that U, as a member
of &, identically satisfies the equations of (5). We conclude therefore that
&8 identically satisfies the first equation. To see the second equation is
also identically satisfied observe that, since Y satisfies both members of
(5) and is non-trivial by assumption,

7% (PY) # o (PY).

Hence, when <b,, a,> = <b,, a,), the first alternative of (8) can never
hold. Thus, for all (z,, 2,>, {®g, >, {Ye, Y1) € B XA,

-RWKzo’ 210y {Zoy 21>y {Toy 1)y Yoy Y1)
= <?/07 Ru(zly 21y Oy, ?/1)) = <y07 ?/1>'

Thus B identically satisfies both members of (5), and we infer that
FBeZforallBex.

To define the arrow-function part of § consider any B, € € A and
h : B — €. Define a function §h from B X A to 0 XA by

&h(<(b,a)) = <(hb,a) for all (b,a) e BxA.

From (6) we immediately see that § preserves interpretations of
the operation symbols of 7, and it is an easy matter to check it also pre-
serves those of the basic symbols of the discriminating systems; in the
case of the constant symbols Py, ..., P,_, we use (7) and the fact that
we must have 0 = 0 because of the assumption that B and € have unique
one-element subalgebras. Therefore

&h: B - FC.

Since § as an arrow function obviously preserves identities and
compositions, § is indeed a functor from ¢ into .

It is an easy matter to check that & is polyinjective. Conditions (1)
and (2) are immediate consequences of the definition of §. For each B € X
let ngbe the function from B into B X A such that n5z(b) = (b, 0) for every
b € B. Obviously, 7 satisfies (3). The proof of part (i) is complete.

The proof of part (ii) of the theorem relies heavily on the results
of [24], and we begin by describing briefly the constructions from this
paper that are important for our purposes. In order to simplify notation



EQUATIONALLY COMPLETE VARIETIES. I 199

we shall assume J¢ is a variety of groupoids, that is, algebras with a single
binary operation.

We assume throughout that A = (4, +) is a fixed member of X
and € = {C,+) is any groupoid that includes % as a subgroupoid; in
particular, € may be U itself. A is called a Thomas Wolfe subalgebra of
Cif, forall z,y € C, v +y € A only if both « and y belong to A; this termi-
nology was introduced by Joénsson and Nelson [16].

We take €. to be the groupoid obtained from € by adjoining two
infinity elemenis oc and oo with oc adjoined first,

Cro = (0U{cx, oo}, +),

where £+ oc = oc 42 = oc for all zeCU{cc} and y4 00 = ooty = o©
for all y e CU {oc, oo}.
In [24] the structure
5916 = <CU { oC, °°}7 + ] Qa’ a>aeAu(oc}
is defined by adjoining to €., for each a € AU {c}, a new nullary opera-
tion representing @ and a new binary operation @, defined by

_y if ¢ =a,
(@, 9) = { oo  otherwise.

For the purposes of the present paper this construction has two impor-
tant features:

(10) $H4U is equationally complete.

This is proved in Theorem 8 of [24].

(11) If € is contained in the variety generated by ¥ and if % is a Thomas
Wolfe subalgebra of @, then $yC¢ is in the variety generated
by 53‘11.

This result is an immediate consequence of Lemma 10 of [24] where
the identities of $HyC& are completely characterized in terms of those of
HqA and €.

Consider any groupoid B = (B, +) whose universe B is disjoint
from that of %A. Let I be a new element not contained in either A or B.
Define

APB = (A®B, +),

where A@B = AUBU{l}, + coincides with the operations of % and
B on their respective universes, and #+y = ! whenever # and y are not
both in A or both in B. A @B is a simple example of a direct sum of a directed
system of algebras (see [26]). It is easy to see that ¥ is a Thomas Wolfe
subalgebra of A DB. The following result is implied directly by Theorem I
of [26]:

(12) If the variety A is variable-uniform, then A@DB € & whenever

A, Bex.
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We are now ready to prove part (ii) of the thecorem. Let 5 be an
arbitrary variable-uniform variety.Let % be a member of 2# which generates
X ; if o happens to be generated by a finite algebra, we assume U itself
is finite. Let # be the variety generated by $Hy%. By (10),.Z is equationally
complete, and .# is obviously locally finite if X" is generated by a finite
algebra.

The functor § is defined as follows. For each B € X let

5B = Hu(AUDB).

(We assume o has been replaced by an isomorphic full subcategory so
that each B e X is disjoint from UA.) By (12), A PB is in the variety gener-
ated by ¥, so taking € to be A PV in (11), we get FB € £ for every B € 1.
For all B,B’' € ¥ and homomorphisms & : B — B’, define Fh to be the
function from A@Bu{«, oo} into A@B'U{cc, oo} such that (Fh)(x)
equals h(z) if # € B, and « otherwise. It is clear &k is a homomorphism
from B into FB’ and § is a functor from " into Z. It is also clear condi-
tions (1) and (2) are satisfied. The forgetful functor ® which takes each
algebra of X into its groupoid reduct clearly maps & into X ; moreover,
since GFB = (A DB). ., for each B e ', it is easily seen that the identity
embedding of B into (ADB).. ., for all B e X constitutes a natural trans-
formation satisfying condition (3). Therefore, § is a polyinjective functor
from X into %, and the proof of Theorem 1 is complete.
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