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THE AUTOMORPHISMS GROUPS OF SYMMETRIC ALGEBRAS

BY

ERNEST PLONKA (WROCLAW)

In this paper the following problem is considered. Let 4 be a set
(finite or infinite) and let P be a sequence of groups P,, 1 < k < n (n finite
or infinite), where P, is a subgroup of the permutation group S,. We
are interested in the transformation groups G acting on the set 4 such
that there exist families F®, 1 <%k < n, of functions

fiAXAX...XA—> A
N -

k times

such that
(%) @1y gy ooy X)) = F(@g1y Togy oeey Tog) for all cePp, 1 < k< n,

and

(**) G ={g: 97'f(g21y ..., gT0) = f(@1y ..., Tp)
for all feF®, ge@, 1 < k< n}.

In [1] Jénsson investigated the problem of characterization of G
such that (*) and (**) are satisfied with P, = {e¢}, 1 < k < n. Necessary
and sufficient conditions on G for which (*) and (**) hold and P, = {e},
1< k< mn, are given in [4].

The problem of describing @ such that (*) and (**) hold for a prescribed
sequence of groups P, 1 <k < n, has a natural algebraic formulation.
In fact, if (**) is satisfied, then G is the group of automorphisms of the
algebra A = (A4; (J FP®) (cf. [2]) the fundamental operations of which

1<k<n
are subdued to the symmetry conditions (*).

1. Terminology and notions. We fix a set 4 with |A| > 1. Let S,
denote the group of all one-to-one transformations of A onto itself. We
shall write A* for 4 x A x ... x A. For a function f: A* > 4 by s(f) we

N S
k times
denote the group of all permutations ¢ such that
f(mu L2y «oey 501‘:) = f(wan Logy eeey wak)

holds for all @, @,, ..., x,¢cA.
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Clearly, if P, < s(f), then (*) holds; we then say that f is P,-symmetric.

If for a sequence P and for a transformation group @ (G = 8,) there
exists an algebra U such that (**) and (*) are satisfied, we call it a GP-
algebra or say that the condition a(@, P) holds.

If G acts on A and © = (@, @,, ..., x> e A*, let
(1) gr = g%y, §%sy + .y §T3

and, for oeS,, let
(2) L. = {Lgyy Lygy eevy Lo »
For @ = 8, and P, < S, let
(8)  Fgp, = {f: 8(f) > Py, f(90) = gf() for all xzeA* and geG}.

For xeA* we put

G, = {9: grePy(2)}
and

(4) Dgp, (v) = {a: aed, ga = a for geG,}.

2. Lemmas. Observe first that transformations g and o of A* as
defined in (1) and (2) commute with each other and that, for any ¢eP,,
Dgp,, (v) = Dgp, (02).

The role of sets Dgp, () is explained by the following

LEMMA 1. Suppose that for every k, 1 < k< n, and for all xeA* we
have Dgp, () #D. Then there exists a function feFgp with f(z) = a if
and only if aeDgp, ().

Proof. Suppose that feFgp, and f(x) = a. Let gr = oz for some
geG@ and oeP,. Then '

ga = gf(x) = f(gx) = f(ox) = f(») = a,

and therefore aeDgp, ().
Now let aeDgp () and Dgp, (y) # O for all yed*. Decompose A*
into GP, orbits,
GPy(y), GPy(2), ...,

and let s be a selector from the orbits such that

8: GP,(z) »> x.
Put

aif y =uw,
(5) f(y) =1an arbitrary element b in Dgp, (y) if y % and y = $(GP(y)),
g9f(2) it y = goz for ge@ and oeP,.
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Clearly, ¥ can be presented as y = goz and y = ¢'c’z for different
9,9 <@ and 0, ¢’ P;, and zes(GP,(2)); therefore we have to prove that
gf(2) = g'f(2) for such g and ¢’. In fact, we have ¢ ~'gz = 07’0’2, whence,
by f(y) e Dgp, (¥), We obtain

9'fly) = of(w).

By definition (5), we have f(goy) = gf(oy) = gf(y) for all ge@, o€ P,,
and yeA*. Consequently, fe Fgp, .

Thus the proof of Lemma 1 is completed.

Inclusion F = |J Fgp, valid for every GP-algebra U = (4; F) yields

PpeP
LeMMA 2. Condition a(@, P) is equivalent to the equality

Aut (4; U Fop,> =G

Let us now consider the following two properties of a pair <{p, z),
where peS,, veA®:
Wi(p, z). For all ge G and oe P, the equality oxr = gox implies
¢|Dgp, () = g| Dgp, (2)-
Wa(p, @). gz ¢ GPy(x) implies |Dgp, ()| =1 and Dgp, (px) = ¢Dgp, (7).

LEMMA 3. A permutation ¢ is an automorphism of the algebra (A ; | J Fapk>
PpeP
if and only if for every k,1 < k< n, and every xeA* either both W, (¢, x

and W,(p, x) are satisfied or Dgp, (y) = O for some yeA*,
Proof. Let us suppose that gpeAut(4; U FGPk>, reA*, and the

sets Dgp, (y) are non-empty for all yeA*. We shall show that W,(g,
and W,(p, z) are satisfied.

In fact, if gz = gow and aeDgyp, (), then, by Lemma 1, there exists
a function feFgp, with f(z) = a. Hence

pa = f(x) = f(px) = f(gox) = gf(ox) = ga.

Thus W, (¢, ) is satisfied.
. Contrary to our statement, suppose that W,(¢,x) does not hold.
By Lemma 1, we have

¢Dgp, (2) = Dgp, (px)

and, therefore, we may assume that |Dgp, ()] # 1. Let a #b be two
elements from Dgp, (7). Applying Lemma 1 again, we infer that there
exist two functions f, and f, in Fgp, such that f,(z) = a and f,(x) = b.
Moreover, since gxe@P,(x), one can choose f, and f, such that

falp®) = fo(oz).
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This, however, gives
pa = ¢f, (%) = fo(pr) = f(er) = ¢f,(2) = ¢b,

which is a contradiction, since a # b.

In order to prove the converse implication, assume that feFgp, and
weA*. Note that Dgp, (y) # O for every y<A* and consider two cases
(a) and (b).

(a) pr @GP, (x). If pr = gox, then using the condition W, (¢, x) we get

flew) = f(gox) = gf(2) = ¢f (%),

since f(x) is an element of Dgp, (%).
(b) ¢z ¢GP,(x). Then, by W,(p,x), we obtain

¢Dgp, (2) = Dgp, (92).
Hence and from the equality

f(z) = Dgp, (%),
being a consequence of |Dgp, ()| = 1, follows the proof.

3. Theorem. For a family P and a transformation group G acting on
a set A there exists a family of functions F = |J F, such that (*) and

1<k<n
(**) are satisfied if and only if for every ome-to-one transformation ¢ of

A, if conditions W,(p,z) and W,(p,x) are satisfied for every x in AF,
1< k< mn, for which Dgp, (2) # O, then peG. '

Proof follows immediately from lemmas 2 and 3.

4. Discusion and examples. If all groups in the family P are trivial,
then a(G, P) can be reduced to the condition a,(G) (cf. [1]). It is not
hard to see that, in this case, the theorem yields the theorem from [4].

To get an-answer to a question of E. Marczewski concerning condi-
tions on transformation group G which would ensure the existence of
a symmetric algebra for which G is the group of automorphisms, it is
enough to put P, = 8§, for £k =1,2,... and apply the theorem.

As is shown in [1], if 2 # » < w, then a,,(G) need not imply a,(G).
The following two examples give some more information on a,(G) (cf. [1],
examples).

Example 1 shows that a,(G@) need not imply a, (@) for every finite n.

Let A4, be the alternating group on a k-element set X,, k> 2, let
X be the disjoint union of X, ¥ > 2, and let G be the direct product of
A, k> 2, acting on X. Since for every ¢ ¢G there exists a finite set Y,
Y c X, such that ¢|Y # ¢|Y for all ge@, the condition Bx, (G) of [1]
holds. Therefore a,(G) holds.
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For a, beXn 427 @ # b, we construct a permutation ¢ on the set X,
which does not belong to @, setting

a if x =0,
p) =1{b if r=a,
&  otherwise.
Clearly, for arbitrary Y with |Y| = n—1 there exists a ge @ which

agrees with ¢ on Y. Since Cg4(Y) = Y (cf. [4]), we see that a,(G) does
not hold.

Example 2. a(@) need not imply a,(@). The only symmetric opera-
tions which commute with each ge G are the unary operations.
Consider X = |J X;, where X, = {a,,ay}, X3 = {by, by, bg}, ...,
k=2

X, ={c1y...,¢,},...; and let G be the direct product

G =8 X A3 x A, x [ ] 8.
k=5
We have

Co({a1}) = Ca({az}) = {ay, as},

CG({bl}) = CG{(bz)} = CG({bs}) = {b17 b2, ba}v'

Co({x}) = {o} if xeX;, k>4,
Ce({ay, 1}) = Cy({az, 4}) = {ay, a,, x} for all reX,
Col{r,y}) = X, if z,yeX; and k =3 or 4,
Co({b;, x}) = {by, b2, b3, v} if x¢{a,;,a,} and ¢ =1,2, 3,
Col{r,y}) =X, if v,yeX, and o #y,
Ca({z,y}) = {x,y} f veX;,yeX;, and k> 4,1> 4.

Let ¢ be a permutation of the set X, and suppose that for every
2-element set Y the permutation ¢ agrees on Cy(Y) with some g<G. Then,
as is not difficult to check, ¢ is in @. Consequently, a;(G) holds.

In order to prove that a,(G) does not hold it is sufficient to consider
permutation ¢ defined as follows:

¢, if v =g¢,
pr ={¢, 1if # =g,
x  otherwise.

It is clear that for every xzeX there exists an element geG such that
@ |Ce({xr}) = 9| Cq({r}) and ¢ ¢ G. Therefore, by the theorem of [4], there
is no unary G-algebra. '
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Finally, we shall show that Dgg ({¢;,...,¢,0) =90 for =n>2.
In fact, if a¢X,, then a cannot belong to Dgg , for there exists
a geG which moves a. Since for every weX, there exists a ge@
such that gz # =, then x is not in Dgg ({6, ...,6,D); thus Dgg
must be empty.

COROLLARY. There exists a transformation group G such that there
is no symmeltric G-algebra although a binary G-algebra ewists.

Following E. Marczewski (see [3]) we say that a k-ary operation
f i8 quasi-symmetric if for any 1, m, 1 < m <1<k, there exists a ges(f)
such that o(l) =m and o(m) = 1. An algebra {(4; F) is called quasi-
symmetric if all operations from F are quasi-symmetric. Observe that
if s(f) is a doubly transitive group, then f is quasi-symmetric and, there-
fore, our theorem yields a sufficient condition on G which ensures the
existence of a quasi-symmetric G-algebra.

A simple modification of the theorem yields a necessary and sufficient
condition.

Example 3 shows that for a group G and all » > 4 there exists
n-ary quasi-symmetric G-algebra, and does not exist an n-ary symmetric
G-algebra.

To this purpose take X = {0,1,2,...,n+1}, G = {g:¢(0) =0,
ged, .}, and P =(8,,8,,8;, 4,,..., 4,) for n > 4. Every GP-algebra
is, of course, a quasi-symmetric G-algebra. Let us note that

Dg4,(<1,2,...,m)) = {0,n+1,n+2},

Dgs (<1,2, ..., m)) = {0}.

If ¢ is a permutation on X with ¢(0) = 0, pe@, then ¢(1,2,...,n)
=g{1,2,...,n) for some geG and, in addition, ¢|Dg, (1,2, ...,n))
# 9| Dg4, ({152, ...,m)). Since the unary operation f(x) =0 commutes
with each ge G, a(G, P) holds.

Now let us consider a permutation ¢eSxy such that ¢(0) =0 and
¢ is odd. Observe that for every &, 1 < k < n, and every (@, &,, ..., &> ¢ A*
we have the inclusion

Dgs, ({Byy «evy Bp)) © 0,2, ..., %}

It follows that W,(¢,x) and W,(¢, x) are satisfied for all 2. Since
¢¢G and Dgg, ({31, ...y @) # 3, the symmetric n-ary G-algebra does
not exist.

I wish to thank Andrzej Hulanicki for his kind help in preparation
of this paper.
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