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0. Introduction. In an earlier paper [6], we showed that the Hilbert
transform C, as defined in the context of the 1-torus T by

Cx(t) = P-V- [Cots/2x(t—s)ds,
T

can be characterized among a certain class of convolution operators K
essentially by the requirement that there exists a composition operator Gx(t)
= x(g(#)), induced by a homeomorphism of T satisfying certain smoothness
conditions, for which the commutator GK — KG is a rank-one operator with
range in the constant functions. The operator K = C, in turn, determines the
group ¥ of all such operators and one finds that certain concepts associated
with the potential theory and the harmonic analysis of the disk arise
naturally as a result of this commutator condition. Indeed, as we shall show
in a detailed example in section 7, the group SU(1, 1)/{+I} emerges
naturally as isomorphic to this subgroup ¥ of the semigroup of all composi-
tion operators almost commuting with C in the sense defined above. The
unit disk appears as the homeomorph of the image |G*1| Ge¥} of % in
L*(T) and as such is a homogeneous space of G. The Poisson kernel is G* 1,
where G* is the Hilbert space operator adjoint to G and 1 is the constant
function 1. That the Poisson kernel appears thus is, of course, well known.
Perhaps less known is the fact that the conjugate Poisson kernel makes its
appearance as the element y(G) of L*(T) such that GCx—CGx = (x, (@) 1.

This paper is motivated by this example and provides a general Hilbert
space setting for the study of the implications for harmonic analysis of the
rank-one commutator condition. While there are developments in our formu-
lation that are parallel to those of the theory of harmonic functions on
symmetric spaces (see [11-[3]), our point of view is fundamentally different.
We start with a compact topological group B (which may be finite), a unitary
representation and an intertwining operator. Using a rank-one commutator
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condition and a concept of harmonic function patterned after Godement’s
mean value characterization (see [3]-[5]), we obtain as a consequence: a
group of operators containing the unitary group, homogeneous spaces, and
what we call harmonic and conjugate harmonic functions which are, in a
sense, “extensions” of “boundary elements”. We exhibit several versions of
the Poisson integral formula, discuss connections with harmonic analysis in
certain invariant subspaces of L?(B) and touch on how boundary elements
may be recovered. We conclude with the example that prompted this effort
to find an appropriate abstract setting in which its significance may be
further explored.

1. Harmonic functions of operators. Given a compact group B and a
unitary representation U of B in a Hilbert space X, let us suppose that the
representation U leaves some element y, of X fixed and that any element
that is fixed by all U,, se B, is necessarily a scalar multiple of y,. We shall
say that 1 is a simple eigenvalue for the representation U. Let #  be the set of
all bounded operators that leave y, fixed. It is evident that ¥ is closed
under complex affine combinations and that, multiplicatively, # is a sub-
semigroup of the multiplicative group of .#(X), the Banach algebra of all
bounded operators on X, and contains # = (U seB!. By a complex affine
combination of two operators S;, S, we mean the operator z;S,+2,85,,
where z, and z, are complex numbers such that z, +z, = 1.

1.1. DeFINITION. Let % be a subsemigroup of #  containing #. We call
a real- or complex-valued function F defined on % harmonic if F(S'U,S) is
continuous as a function of s for each S and §’ in ¥ and

F(S)= [F(S'U,S)ds
B

for all ' in %.

1.2. THEOREM. Let & be any subsemigroup of W that contains 4. The
function F, defined by F(S) = (Sx, yo), is harmonic on & for all xe X.

This theorem is an immediate consequence of the following lemma:

13. LeMMA. Let Aec #(X) and let U be a unitary representation of B in X
with the property that 1 is a simple eigenvalue of U and let y, be a
corresponding normalized eigenvector. Then

(Ao, V) (x, yo) = [(AU,x, y)ds
B

Jor each x and y in X.
Proof. For each ye X, the integral j'(AU x, y)ds is a bounded linear

functional in x. Thus, there exists an element z, in X such that

(x, z,) = [(AU, x, y)ds.
B
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Upon replacing x by U, 'x, we find, for each 1e€B and all xeX, that
(x, U,z)) =(U; " x,2)) = (AU U, - x, y)ds
B

= .‘.(Ausg’l x, y)ds =(x, z,).
B

This last equality is a consequence of the invariance of the Haar
measure ds. Since the eigenvalue 1 is simple, it follows that z, = (y, Ay,) y,.

1.4. CorOLLARY. If Ay, = yo, then
(x’ yO)(yO, Y) = ‘((Ast, ,V)ds.
B

The theorem now follows from the lemma and the corollary as applied
in the chain of equalities:

[F(S'U,S)ds = [(S'U,Sx, yo)ds = (Sx, ¥o)(5' o, yo) = (Sx, yo) = F(S).
B B

It is evident that any harmonic function F on % is left-invariant under
translations by # in the sense that F(U,S) = F(S) for all Se & and all teB.

Thus, harmonic functions on ¥ are constant on the equivalence classes
in . defined by the equivalence relation: ' ~ S if ' = U, S for some teB.
These classes will be called right cosets (mod %).

2. The intertwining operator K as analog of the Hilbert transform. Let
K €.#(X) be an intertwining operator for the representation U. Let (y)
denote the one-dimensional subspace spanned by y,. It will be understood in
all that follows that Ky, = 0. Let

¥ ={Se #] SKx—KSxe(y,) for each xeX}.

One verifies that % is an affine subspace of #(X), that is, .% is closed
under complex affine combinations and that, multiplicatively, ¥ is a sub-
semigroup of #". In fact, .¥ is a translate by the identity I of a weakly closed
subalgebra of #(X). Since all the operators concerned are bounded, there
exists, for each Se.¥, a unique element y(S) in X such that

SKx—KSx = (x, y(S))yo

for all xe X.
The following two properties of y(S) can also be readily verified:
(i) If Se ¥ and S™! exists in #(X), then S”'e & and

(x, y(8™H) = (57" x, y(9)).
(i) For each S and §’ in .¥, we have

(x, ¥(S8)) = (S’ x, y(8)+(x, y(S)).
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We remark in passing that this last relation is a logarithmic version of
what has been termed the cross-homomorphism or 1-cocycle property. That
is, if we define (S, x) = e*” then

a(SS', x) =0a(S, S'x)a (S, x)

(see [2], p. 274, and [9], p. 202, line 9). No use will be made of this property
in the present paper.

The set 4= {Se ¥ S~ 'e#(X)} is a subgroup of & and contains #.
However, 4 is no longer an affine subspace of #(X).

In the example of section 7, where K is the Hilbert transform on the
torus, the element y(S) turns out to be the conjugate Poisson kernel. In the
present setting we have the following theorem:

2.1. TueoreM. The function F, defined by F(S) = (x, y(S)), is harmonic on
& for each xe X.
Proof. For each S, §' in ¥, we have the relation

(8Kx—KSx), yo) = (x, y(8) = [(x, y(§'U,8))ds— |(U,Sx, y(S))ds.
B B

From corollary 1.4 with A =1 and x replaced by Sx we see that this last
integral equals (o, y(S"))(Sx, yo), which vanishes because of the vanishing of
the first factor under the hypothesis that Ky, = 0.

Remark. We have proved theorem 2.1 under the hypothesis only that
Ky, =0. If we were to assume that K*y, =0 as well, then a more direct
proof is available, which also has the virtue of exhibiting the connection
between the analog K of the Hilbert transform and the analog y(S) of the
conjugate Poisson kernel in a more familiar way. That is, if we put z = Kx,
then L

(x, y(S)) = (SKX, yo)—(KSX, )'0, = (SZ, yO)—(Sx’ K‘yO) = (SZ, YO),

which is harmonic according to theorem 1.2.

3. The algebraic structure of .
3.1. TueoreM. If K*yo =0, then each S in & has the decomposition
S=T+N=T({+N),

where T and N are operators having the following properties:
(1) T commutes with K and T*y, = y,.
(2) Ne#(X), N>=0, Ny, =0, and range N = (y,).
(3) If S is invertible, then so is T.
(4) If the null space of K* is (yo), then T and N are unique.

Proof. Given Se ¥, set
T=(I-Q0)S+Qo and N =Q,(S-1),
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where Q, is the projection of X on (y,). The properties listed above are easily
verified.

Let . f " denote the set of all bounded nilpotent operators of index 2 and
range (yo). For each y in the orthogonal complement of (y,), define N, by
N, x =(x, y)yo. Let % be defined as in section 2.

3.2. THEOREM. If K*y, =0, then the set I+ A" is a maximal abelian
normal subgroup of 4. The mapping y — N, is an isometric isomorphism of the
additive group of the orthogonal complement of (y,) onto I+ A", equipped with
the metric

d(I+N, I+N) = |[(I+N)—-(I+N||
of the relative uniform operator topology.

The proof relies on the results of theorem 3.1 applied to elements of ¥
and is a straightforward verification. We omit the details.

Let .7 =\Te¥ TK =KT).

33. LemMA. If T and T* are both in .7, then T has a unique polar de-
composition T = UP, where U is unitary, P is positive, and U and P are in .7.

Proof. Let S = T* T and let P be the unique positive square root of S.
Since Sy, = yo and since P is the strong limit of polynomials in S, it follows
that Py, = Ay, for some complex number A. Since P2y, = A%y, = Syo = Yo,
it follows that 12 = 1, and since P’ is positive, 4 = 1. The limit P is also self-
adjoint and commutes with K. Since T and T* are supposed invertible, so
is S. Hence P is invertible with inverse P! =S~ ! P, Writing U = TP~ !, we
obtain a unitary operator that commutes with K and leaves y, fixed.

3.4. THEOREM. If the null space of K* is (yo) and if the group .7 is self-
adjoint in the sense that TeJ implies T*ec .7, then 9 is the semidirect
product:

G= 9 p(I+.1)

of the following subgroups of %: ¥ = all unitary operators in I ; P = all
positive operators in T . I +.4" = all operators of the form I+ N, where N is
nilpotent of index 2, vanishes on (y,) and has range (y,), provided also that
# is abelian.

Proof. The theorem is a consequence of theorems 3.1, 3.2, lemma 3.3
and the following observation: if

G=VP(I+N) and G =V'P(I+N),
then
GG =VP(I+N)V'P(I+N)=VPV'P'(I+N")
=VV' (V' ' PV)P(I+N"),

where V'~! PV’ is positive.
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4. Representation of a class of functions harmonic on .¥. The theorems of
the previous section on the structure of ¥ enable us to prove a representa-
tion and uniqueness theorem for a class of harmonic functions on ¢’

4.1. DeriniTioN. A function F defined on the affine subspace ¥ will be
called affine if, for every S and §’ in & and complex numbers a and a’ such
that a+d’ = 1, the function F has the property

F(aS+a'S) =aF(S)+a F(S).
We shall also say that the affine function F is bounded on & if
IF(S)-F() <M
for some M and all § in & satisfying ||S—I|| < 1.
4.2. LemMA. If K* y, = 0 and F is a harmonic and bounded affine function
on /', then there exist a z in X and a complex number ¢ such that
F(S)=(Sz, yo)+c for all S in .

Proof. Since F is a bounded affine function on ¢, the functional L
defined by L(S—1I) = F(S)— F(I) on the linear subspace .¥'—I of #(X) is a
bounded linear functional there, and so by the Hahn—-Banach theorem is
extendable to #(X) (we shall continue to denote the extension by L). For
each xe X, we may write uniquely x =(x, yo) yo+), where ye(yo)*. We
define a bounded linear functional r on X by setting

r(x) = L((yo, X) I+ N,),

where the bar denotes complex conjugation, and N, is the operator previous-
ly defined. By the Riesz theorem, there exists a ze X such that

L((yo, X)I+N,) = (z, x)

for all xe X with y = x—(x, yo)yo. In particular, L(I) =(z, yo) and L(N,)
= (z, y). We may now apply the results of the previous section.

Let Se ¥ and let S = T+N,, where y = N*y, and T* y, = y,. From
the definition of Lon ¥ —I we know that

F(S)=LS—-D+F(I)=L(S—-L(H+F(),

where we have made use of the linearity of the extension of L. Thus F(S)
= L(S)+c. It remains to show that L(S)=(Sz, y,).
To this end, we first observe that

L(S) = L(T+N,) = L(T)+ L(N,) = L(T) +(z, y).
Now, since F is harmonic, so is L. Accordingly,

L(S) = [L(S'U,;S)ds for all §' and § in ¥.
B
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In particular, taking S’ = Q,, the projection on (y,), and S = T, we obtain
L(T) = ;L(Qo U,T)ds = £L(Qo)ds = L(Qo)
since Qo U, T = Q,. Furthermore
L(Qo) = £L(U, Qo)ds = '{L(Qo U)ds = ;L(U,)ds = L(I).

Thus
L(S) = (z, yo) +(z, y) = (z, yo+)).
Since T*y, = yo, we have the equalities
(82, yo) = (TU+N,)z, yo) = (z,(I+ N3) yo) = (z, yo +)).

This completes the proof of the lemma.

If we put x =z+cy,, we find that (Sx, yo) = F(S) for all Se&. It is
easily seen that x is unique with this property. Indeed, if (Sx, yo) = O for all
Se ¥, then using the particular choices S = I and S = I+ N, we find that x
is orthogonal to all elements of the Hilbert space X. The following theorem
has now been proved:

4.3. THEOREM. If K* yo, = 0, then every bounded affine harmonic function
F on & can be represented in the form

F(8) = (Sx, yo)

with a unique xe X. Thus, there is a one-to-one correspondence between the
Hilbert space X and the set of all bounded affine harmonic functions on <.

In what follows, we shall suppose that K*y, =0 as well as Ky, =0.
The truth of the following assertions follows from the theory of Hilbert spaces
and the general theory of topological groups.

The group 4 is compact in the strong and weak operator topology in
<. The group 7 is weakly closed. If % is given a topology in which it is a
topological group, then % acts transitively on the right coset space J \¥
with action p-G = 7 G' G, where pe 7\ % and G'ep. In particular, % is a
topological group in the relative uniform operator topology.

With the help of theorems 3.1 and 3.2, the following additional facts
about % in the relative uniform topology can be proved:

(1) J is topologically isomorphic to the factor group %/(I+.4).

(2) The quotient space J \ ¥ of right cosets (mod 7) is homeomorphic
to a subspace of I+ .4" in the relative uniform topology, and therefore to a
topological subspace of the orthogonal complement of (y,), which, because of
the decomposition ¥ = 7 (I + .4, is precisely the set {(G*—1I)yo| Ge ¥}. The
proof of the first of these is standard. We shall only state and prove a
version of the second of these assertions.

7 — Colloquium Mathematicum LV.2
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4.4. THEOREM. Let % have the relative uniform topology. The quotient
space I \9 is homeomorphic to the topological subspace (9*—1)y, of (yo) .

Proof. We define the mapping
a: (T\D—((9*—Dy,)
by a(p) = (G*—1) yo, where pe 7\ % and G €p. This mapping is well defined,
for if G=T({I+N) and T'e .7, then
(T'G)*=1I)yo =(G* T* =) yo = (G*—1) yo.
Now, if (G¥—1)y, =(G%—1)y,, then if
G,=T,(I+N,) and G;=T,(I+N,),

it follows that N¥y, = N¥y, and N, = N,. Thus G, =T, T; ! G,.

Since ¥ has the uniform operator topology, the mapping G —(G*-=1)y,
is continuous. It follows that the mapping « is also continuous.

It remains to show that the mapping « is open on its range. That is, if v
is an open set in J \ 9, then a(v) is open in (7 \ ¥) < X. This requirement
is equivalent to the following: for every Ge % and ¢ > 0, there is a 4 > 0 such
that if G'e 9 and

IG™ yo—G* yoll <9,
then there exists T"e < such that
IT"G'—-Gl| <e.

We show now that this criterion is met.
For a given G=T(I+N)e¥% and ¢>0, let d =¢/||T||. Let G' =
T (I+ N’) and suppose ||G'* yo—G*y,ll < 6. It follows from theorem 3.2 that

(7 +N)=U+ Nl = |IN* yo— N* yoll <&/lITl.
Thus
IT(T)"'G'~Gll =IITI+N)-TI+N)j
<ITIHIA+N) =T +N)l| <e.

5. Subgroups of ¥ and Poisson spaces.

5.1. DeFINITION. A pair (J¢, R), where 5 is a subgroup of 4, and R is a
subset of yo+(yo)', will be called a Poisson pair if the following three
conditions are satisfied:

(1) yo€eR;

(2) H*R =R for all He ;

(3) for each xeR, there is an He . such that H* y, = x.

It is evident that if (s, R) is a Poisson pair, then R = 5™ y, and that



HARMONIC FUNCTIONS ON HOMOGENEOUS SPACES 293

each subgroup ¥ of ¥ is a first element of some Poisson pair. The second
element R of a Poisson pair will be called the Poisson set of .# in the Hilbert
space X. The set R is not necessarily an affine subset of the affine subspace
yo+(yo)%, and R may be a Poisson subset for more than one subgroup .
One verifies that the mapping (x, H) — H* x is jointly continuous with
respect to the norm topology of X and the relative uniform topology of
# < B(X), and defines a transitive action of »# on R. We write x-H
= H* x. According to theorem 3.1, each He 5 has the unique decomposi-
tion
H=T+N,=T(I+N,),

where T* y, = yo and N, x = (x, y) yo, With y = (H*—1) yo. However, there is
no guarantee that either T or I+ N, belongs to #. Of course, if either
belongs, then so does the other.

5.2. DeriNiTION. A triple (M, =, .%#) will be called a Poisson space if M is
a topological space, s a subgroup of % containing %, and = a homeomor-
phism of M onto the Poisson set J#*y, of #. The Hilbert space valued
function n will be called the Poisson kernel of the Poisson space.

It will be understood that, unless the contrary is stated, the topology of
the Poisson set J* y, is the relative norm topology in X.

One verifies that ¥ acts transitively on M with respect to the jointly
continuous mapping

(p, H)—» p-H ==~ (H*n(p)),

so that M is a homogeneous space for 5. There is an element poe M such
that m(py) = yo and the stability group in ) of p, is I N H¥#.

We will presently give a few general examples of subgroups J#, Poisson
sets and Poisson spaces. First we remark that the chief distinction being
made through the use of the words set and space is that the Poisson set is
defined for any subgroup J# of % and is a subset of the Hilbert space X,
while a Poisson space involves a subgroup  containing % and need only
be a homeomorph of the corresponding Poisson set. Secondly, if (M, n, ) is
a Poisson space, then the right coset space J N #\J  in the quotient
topology is a homogeneous space for J# and is in one-to-one correspondence
with the homogeneous space M, and therefore with J#* y,, and while the
mapping B, defined by

BT n #)H) = H* y,,

of 7 Nn#\H# onto H#*y, = X is continuous and one-to-one, yet if it is not
open onto its range, the coset space will not be homeomorphic to the
Poisson set J¢* y,. Thus, if ) is a subgroup of ¥ and contains %, then the
triple (T N ¥\ 5, B, #) will be a Poisson space if and only if the mapping
H — H*y, is open (see [8], p. 65).
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58.3. ExampLEs. (1) The triple (F\ ¥, a, 9 is a Poisson space. This is
a direct consequence of theorem 4.4, since %*y, is homeomorphic to
(9*-Dy,. ]

(2) If 5 is a subgroup of 4 and contains %, then (#* y,, identity, )
is a Poisson space.

(3) The Poisson set of ¢ is y,+(yo)*. This is also the Poisson set of I
+ 4" as well as of other subgroups of ¥, eg., of )# = ¥(I+A).
(4) If X, is any subspace of (y,)* that is #-invariant, then

# ={U,+N,| yeX,, seB}
is a subgroup of ¥ with Poisson set yo,+ X ;. The action of 5 on y,+ X, is
-given by
(o+x)Hs,yy = H (Yo +x) =(U -y x+ N3)(yo+x)
=yo+(U-1x+y), where H,, =U,+N,.

5.4. DeriniTion. If (M, =, ) is a Poisson space and F is a complex-
valued function defined on M, then F is said to be harmonic on (M, n, ) if
for each pe M and each He 5:

(1) F(p-U,H) is continuous as a function of s;

(2) F(po-H) = [F(p-U, H)ds.
B
The following proposition is evident:
5.5. ProrosiTioN. If (M, &, ) is a Poisson space, then for each xe X the
function F.(-) =(x, n(-)) is harmonic on (M, n, ) and satisfies
F.(p-H) = Fy,(p).

Not every function F harmonic on a Poisson space (M, n, ) need
have a representation F(p) =(x, n(p)) for some xe X, as the following
example shows.

5.6. ExampLE. Let B be the 1-torus. Let X be the Hardy space H2(B).
Let U be the regular representation U, x(t) = x(t+s) in H>(B). Let
e()=€™ and Kx= —i(x—(x, ep)eo).

The operator K is an intertwining operator for the representation U in
H?(B). Let m be a positive integer. For we C, se B, let H, ,, be the operator
defined by the equations

H(s.w) en = k-0

é™e, for n > m.

Let ¢ = {H,) séB, we C}, where C denotes the complex numbers.
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One sees that
Hy o Kx—KHg,, x = —i(x, we; +W2es+ ... +W"e,)e,.
Thus ¥ is a subgroup of
% = {GeB(H*(B) G~ ' e®B(H?(B)), Geo = €5, GKx—KGx €(e,)}

and contains %, since U, = Ho,- The Poisson set of # is the set of all
elements in H2(B) of the form

n(z) =eo+ze, +z%e,;+ ... +7™e,, ze€C.
Also,
HY , 7(2) = n(ze* +w).

Thus, if we take M = C, the triple (C, n, 5#) is a Poisson space, and the
action of s on C is given by

V4 'H("w) = 1t- 1 (Ha'w) 1‘(2)) = Zeis"‘ w.

In particular, 0-H, ,, = w.
If F is harmonic on (C, n, 5), then for all seB, z and w in C

F(O'H(,’w)) = IF(Z ° U' H(,.w))dt.
B

Since
F(z U Hyw) = F(zé" H,) = F(zé** 9 +w),

it follows from translation invariance of the integral that F is harmonic on
(C, =, ) if and only if F has the ordinary mean value property

F(w) = [F(z¢" +w)dt,
B

whenever the integrand is continuous in t. In particular, any entire function
has this property. Thus if F(w) = w™*!, for example, then F is harmonic on
(C, m, o) but there does not exist an xe H2(B) such that F(w) = (x, n(w)).
However, every polynomial of degree < m has this representation.

6. An invariant subspace of L?(B) and boundary values. In all that
follows, we shall assume that the Hilbert space X is separable and that the
representation U is the direct sum, without repetitions, of countably many
irreducible subrepresentations {U®}; that is, we suppose that U? is not
equivalent to U™ for j # k. This is true, in particular, if B is abelian and U is
the right regular representation:

R.f(s) =1 (st).
Let X = @X™ denote the corresponding direct sum decomposition of X
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with X© = (y,). For each k > 0 select, once and for all, an orthonormal
basis (y, y¥, ..., y¥) and let

wh = yP+yP+ L +)R.
For each xe X, define
fE6) = (U, x, wh) = (UP x;, wh),

where x, denotes the component of x in X®,
With the aid of the orthogonality relations

1
\/;ka(xa u) (y, U) 6}&

of the theory of group representations, one may prove the following proposi-
tion identifying X with a subspace of L?(B):

[(U9x, y)(UP u, v)ds =
B

6.1. ProposiTION. For each x, ye X, we have the following relations:
(D) ()2 (s)ds = (x;, %) for all j >0, k> 0.
B

(2 Y. fi¥ converges to an element f. in L*(B).
k=0

B [£6)f () ds = (x, y).
B
The mapping x — f, is a linear isometry of X onto a subspace of L?(B).

The proofs of these assertions rely on the orthogonality relations and
completeness; they are entirely computational and are omitted.

The image X’ = {f,| xe X} of X in I*(B) is an invariant subspace of the
right regular representation R of B in L?(B). Indeed, given f, € X', we see that

Rtfx = Z R(f}k) = Z f[(l':l =fU‘x'
k=0 k=0
We also obseryc that, in general, if A4 is any bounded operator on X,
then the formula Af, =f,, defines an operator A on X' and ||4|| = ||A]|.
Let (M, n, 5#) be a Poisson space. The formula
F(p) = (Hx, yo) = (x, H* yo) = (x, m(p))

has its counterpart

F(p) = ‘{fnx (8)fyo(s) ds = ‘j,fnx (s)ds = [fx(s) Sy, (s)ds
B
= l};fx (8)fx(n (5) ds,

where use has been made of the fact that f, (s) =1 for all seB.
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6.2. DeriniTION. The (in general) complex-valued function P defined on
M x B by

P(p, s) =fun )

is called the Poisson kernel in X' of the Poisson space (M, n, ).
We thus obtain the familiar looking Poisson integral formula

F(p) = (f:(s) P(p, s)ds.
B

In particular, for x = y,, we get
1=(P(p,s)ds for all peM.
B

We now show that under certain hypotheses the Poisson kernel of a
Poisson space is harmonic. If we set

v =wQ+wh4 W,

we may conveniently restate formula (2) of proposition 6.1, as applied to x
= n(p), as follows:
lim (U -, o™, n(p)) = P(p,s) for each peM

n—a

in the sense of L?(B).
That (U_, v™, n(p)) is harmonic on (M, n, &) for each s€B and each
n >0 is clear.

6.3. THEOREM. The Poisson kernel P(p, s) is harmonic on (M, =, #) for
each s€B for which the sequence {(U _,v™, n(p))} converges uniformly to
P(p, s) on every compact subset of M.

Proof. For any given He # and peM, the set {p-U,H| teB)} is a
continuous image of B in M, and so is compact. If seB is as in the
hypothesis, then the sequence {(U -, v, n(p-U, H))}, for fixed p, s and H,
converges uniformly to P(p- U, H, s) which is, consequently, continuous in t.
It follows that

lim (U -, o™, n(p-U,H))dt = [P(p-U, H, s)dt.
B

n—®B
Since (U -, v, n(p)) is harmonic, we have
i!(U’_l v™, n(p-U, H))dt = (U __, v, n(py- H)),
and since
P_{T:D(U,—l ™, “(Po'H)) = P(po"H, s)
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for this particular se B, we arrive at

P(po-H,s)= [P(p-U,H, s)dt-
B

6.4. CorOLLARY. Under the same hypotheses, the Poisson integral of any
fel*(B) is harmonic.

The proof consists in applying the definitions, theorem 6.3 and inter-
change of the order of integration.

In the theory of harmonic functions on symmetric spaces (see [4] and
[5]), questions concerning representation of harmonic functions as Poisson
integrals are formulated in terms of boundaries, as are questions concerning
recovery of boundary values. We may fit our formulation into this setting, in
a manner suggested by the situation in the motivating example. A class of
problems thus arises: if B is a compact group, U a representation satisfying
the conditions imposed in the present section, K an intertwining operator,
and ¥ a subgroup of % consisting of composition operators induced by
homeomorphisms of B onto itself, does there exist an element H € such
that the sequence {H"} of iterates converges and provides a “pointwise”
solution to the recovery problem? Such is the case in the motivating example
[6], p. 125. Beyond this, so far as I know, this is an unsolved problem.

The following definitions are modelled after those in [5].

6.5. DeFINITION. Let (M, n, ) be a Poisson space. A homogeneous
space M’ for o is said to be a weak boundary for (M, n, )#) if B acts
transitively on M’ through U; that is, if for each g, g'e M’ there exists an
se B such that q' = q* U,, where (g, H) — q*H is the action of # on M.

6.6. DerFINiTION. A weak boundary for (M, n, ) is called a boundary if
there exist a sequence {H,} in # and a q, e M’ such that

lim {f(g*U,H,)ds =f(q,)

n—oB

for each continuous function f on M’ and ge M'.
If M’ is a weak boundary for (M, =, #), then there exists a unique
normalized U-invariant measure m defined on M’ such that

| f(@dm(q) = [f(go*U,)ds
M’ B

for all f e ! (M’) and arbitrary g, e M. Still following [5], one says that a
function F defined on M is a Poisson integral of f: M' — C if

F(po-H) = [ f(q+H)dm(qg).
>

It is easy to show that if F is a Poisson integral of a continuous f: M’ — C in
the above sense, then F is harmonic on (M, n, 5) in the sense of definition
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5.4. The proof depends on the definitions, transitivity of the action under %
and ¢ and interchange of the order of integration.

The underlying topological space of B is a weak boundary for
(M, =, 5#) in the special case where there is an action (s, H) — s * H of ¢ on
B with the following two properties:

(1) sxU, = st for all s, teB.

(2) For each xe X, fy.(s) =f.(s * H) for almost all se B, where f, is as in
proposition 6.1 (2).

The space B will be a boundary if, in addition, there exists an He 5
such that thé sequence of iterates {H"} has the property that

lim (H" x, yo) =fx(so)

n—wo
for some soeB and for each xe X for which f, is continuous. We may
assume in such a case that s, = e, the identity in B, since we may replace H
by U, H USE" Thus, under these hypotheses, for any xe X for which f; is

continuous we have
lim (f.(s+ H"ds = lim [f,, (s)ds

n—=oB n-wopB

= lim (H" x, y,) =f,(e).

n—+aw
Furthermore, since P(p-U,, s) = P(p, st™!) for all pe M and t, se B, and
since f, () = fy,x(e) and

gfx(S)P(Po'H", s)ds = iﬂ(s « H") ds,

we have the equivalent formulas

fx(t) = Llim [f.(st) P(po- H", 5)ds

n—oB

= lim {f,(s) P(po-(U,-, HU)", s)ds

n—op

= lim [f(s) P(po- H", st™")ds

n—woB

for each t€S.

7. The motivating example. Let B be the 1-torus, X = [*(B) angd U, x(s)
= x(t+s5). Let K be the convolution operator defined by

Kx(t) =P V- [k(t—s) x(s)ds,
B

where the kernel k(t) is real valued and satisfies the following four condi-

tions: _
(1) k'(t) is continuous on (0, 2n);
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(2) kK'(t) > 0 for all te(0, 2n);
(3) there exist an a > 0 and an integrable function ¢ on (0, 2r) such that

k(t) = @(t)/t*(2n—1t)* for all te(0, 2n);
(4) P-V:[k(t)dt exists.
Let yo b: the constant function 1 and let
& = {Se B(X) SKx—KSx =(x, y(S))yo for some y(S)e X}.
Let . be the group of all composition operators H defined by
Hx(t) = x(h(1)),

induced by the set of all mappings h: R — R satisfying the following three
conditions for all teR:

(1) h(t+2n) = h(t)+2x;

(i) A'(t) > 0;

(iii) A" (t) exists.

Let o = S N, Note that % — .

Essentially, the following theorem was proved in [6] under hypotheses
somewhat weaker than those listed above.

7.1. THEOREM. ¥ is a proper subgroup of 3 if and only if
k(t) = ACott/24+ B for some real numbers A <0 and B.

For the case A= —1 and B =0, the operator K has the property Ky,
=0.

7.2. Determination of ) for the case k(t) = —Cott/2. We begin by
showing that for each H e 5 the associated mapping h: R — R is of the form
h(t)=60+h,(t—9)

for some 6, ¢, reR, where —1 <r <1 and

1
1-r?

h.(t) = j ds.

1+2rcoss+r?
0

For, suppose that k(1) = —Cott/2 and that He . Since ¥ c ¥,
effecting®a suitable translation if necessary we may assume that h(0) = 0.

By an argument similar to that given in [6], pp. 119-121, one can show
that there exists a 2n-periodic function G,(s) which is continuous for all se R
and is such that
h=Y(t)—h~1(s) t—s

2 COtT = G,, (S)

for all ¢, seR, with t # s (mod 2n). (The function G, is, in fact, y(H).)

(1) h~1'(s)Cot
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One may now deduce, by interchanging s and ¢, subtracting, and letting
t — s, that

h=1"(s)
h=Y(s)

for all se[0, 2n]. Furthermore, since h~!'(0) = h~!'(2n), there exists an
so€(0, 2n) such that h~!"(s,) = 0. Putting *®

) = Gy(s)

g~ (s) = h ! (s+s0)—h™ ! (s0)s

one finds that g~ '(0)=0=g~'"(0) and that the function g~' satisfies
equations (1) and (2).
In particular, for s =0, we have
g~'@ t

-1 = e
(3) g~ " (0)Cot 5 Cot >

for all t # 0 (mod 2n).
We note that if g~'(0) =0, then one can deduce from (3) and the

continuity of g that g(r) =t for all r eR. In any case, there exists a number r
(=1 <r <1) such that

1
g1 (0) = +r
"
We thus obtain
1-—- t ! 1-r2
4 “t—-2Ct 1—Ct—— .
@ ® o 1 %2 gl 2rcoss+r2ds
Setting
1-r2
h (t t) =
() =g(0) I1+2rcoss+r 5

we may write
h(s) = so+h(s—h"'(s0) and  h71(s) = h™ ! (so)+h_,(s—so).
Conversely, for every mapping h: R — R of the form
h(t)=0+h,(t—¢) with —1 <r<1,

the associated operator He 2(X) defined by Hx(t) = x(h(t)) belongs to .

7.3. Harmonic and conjugate harmonic functions on X¥. If

Hx(t) = x(h(t)) = x (6 + h,(t — 9)),
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then
1 1
F(H) = (Hx, 1) = ﬂgx(h(t))au - %ix(uh,(t))dz = (x, H*1)
1 o 1 1-r?
2—£x(t)h, e—0)dr _ﬂ,‘!x(t)l—Zrcos(t—O)+r2 dt
Also »

1
(% y(H) = 5 [x 0 Gul@)dr

1 h"”() 1 K, (t—0)
O 4 = O o)
1. t 2rsin(@—1)

21t£x 1—2rcos(t—0)+r?

dt

74. X is algebraically isomorphic to SU(1, 1)/{+1}.

The group s is algebraically isomorphic to the group I' of mappings of
the unit circle C = {§| || = 1] onto itself under the correspondence defined
as follows: If h(t) =0+ h,(t—¢) with ¢, 6, ¢ in B and 0 < r < 1, define the

mapping g,,: C — C by the equation
¢+a

1+a¢é
Conversely, for any pair of complex numbers (u, a) with |u| =1 and |q]

< 1, there is a unique operator H,, in ) defined by the equation H, , x(t)
= x(h, (1)), where the mapping h,, is well defined by the equation

ei.hu'a(‘) = gl‘,ﬂ (e‘-') .

where u = €°® and a = ré'®.

(1) 9ua (é) =u

It is, of course, well known that the group of mappings
r= {gll?¢| lul =1, Ial < l}

is isomorphic to SU(1, 1)/{+1}.
We note that the parameter relations in g,,0g,s = g are
v+ab a+bv

and c¢=—
v+ab ab+v

and that H,,H,,=H,, .

18. T NnH¥ =% and M = T N H\ K, as a point set, can be identified
with the open disk D = {z] |z] < 1}.

Two operators H, and H, are equivalent (mod %) if there exists an se B
such that H, = H, U,; in terms of the mappings, this is equivalent to the
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existence of ve C such that
Guzaz (§) = Gu,.a, (v8)  for all LeC.

This, in turn, is equivalent to the condition u, a; = u;a,. Thus each
right coset in 5 (mod %) is characterized by the complex number z = ua. As
can be seen from 7.4 (1), z = ua = ré.

Now, suppose that TeZ N, that is to say, T is a composition
operator in J¥ that commutes with K. The associated mapping t: R — R can
be written as t(t) = h(t)+b, where h(0) = 0 and the associated operator H is
also in J Nno. Since H commutes with K, the associated G, has the
property that G,(s) =0 for all seR since G, = y(H). Now, from 7.2 (2) it
follows that h”(s) = O for all se R, and so h is the identity mapping, and 7 is
a translation.

7.6. The triple (D, n, ), where D is the unit disk in its usual topology, n
is the homeomorphism defined by n(z) = Hf, 1, and ¥ is as in the preceding
sections, is a Poisson space. The action of # on D turns out to be by linear
fractional transformations.

Indeed, the mapping = is given explicitly by the following: if z = re’,
then

H,,x(t) = x(0+h,(t —0)),

so that H},1 =h Y (t—6).
While it can be readily verified that the mapping = is one-to-one, the
proof of its bicontinuity is more intricate and will not be given here.
The action z-H,, of # on D as defined in section 5.2 is obtained
explicitly as follows:

z:H,,=n"'(Hi Ht. ) =n""(H,.H,)*1)

z+a
=n '(Hi ) =n"'(HY, 1) =we=u——"
1+az
since

1+az a+z

W=u——o and c¢=—

1+az az+1
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