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PARTIAL PARALLEL CLASSES IN STEINER SYSTEMS*
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MARIO GIQ NFRIDDO (CATANIA)

1. Introduction. An S(k, ¢, v) Steiner system is a pair (S, B), where S is
a finite set containing v elements (points) and B is a collection of t-element
subsets of S (blocks) such that every k-element subset of S is contained in
exactly one block of B. The number |S| = v is called the order of the Steiner
system (S, B). An S(2, 3, v) Steiner system is called a triple system (STS(v)), an
S(3, 4, v) Steiner system is called a quadruple system (SQS(v)). It is well known
[2] that an STS(v) exists if and only if » = 1 or 3 (mod 6), and in 1960 Hanani
[1] proved that an SQS(v) exists if and only if v = 2 or 4 (mod 6). Very little is
known about S(k, k+1, v) Steiner systems for k > 4.

By a partial parallel class of blocks of the Steiner system (S, T) is meant
a collection n of pairwise disjoint blocks of T. If the blocks of mn partition S,
then = is called a parallel class of blocks.

In [4] Lindner and Phelps proved that any S(k, k+ 1, v) Steiner system,
with v > k*+3k®+k2+1, has a partial parallel class containing at least
(v—k+1)/(k +2) blocks. For k = 3, it follows that any SQS(v) of order v > 172
has a partial parallel class containing at least (v —2)/5 quadruples. Further, they
proved that any STS(v) of order v > 9 has a partial parallél class containing at
least (v—1)/4 triples (except possibly for v = 19 and 27).

The purpose of this paper is to prove that any SQS(v) (for every admissible
v) has a partial parallel class containing at least [(v+ 2)/6] quadruples and that
any STS(19) has a partial parallel class containing at least S triples. In what
follows, given a number r, we denote by [r] the largest integer s such that s < r.

2. Parallel classes in SQS(v). Let n(v) be the largest number such that every
SQS(v) has a partial parallel class of size n(v). We have

v=4 8 10 14 16 20 ...,
v)y=1 2 2 3 7?7 ?
THEOREM 2.1. In a Steiner quadruple system of order v there are at least
[(v+2)/6] pairwise disjoint blocks.

* Lavoro eseguito nell’'ambito del GNSAGA del CNR.
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Proof. Let (S, q) be an SQS(v) and let © be a partial parallel class of
quadruples of ¢ of size t such that if P = | J b, then |S—P| > 2t +4. It follows

that v > 6t+4. For every x, yeS—P, xb:Z y, let
M,, = {ueP:3zeS—P with {x, y, u, z} eq}.
If A, BeS—P, A # B, denote by |
{ci1s Cizr Ci3y Cia}s  i=1,2,...,k,
{bis,s biz, bi3, b}, i=1,2,...,5,
{aiy, aiz, a3, ais}, i=1,2,...,r,
{a;, Bis Tis 01} » i=1,2,...,h,

respectively, the quadruples of n containing exactly 1, 2, > 3, 0 elements of
M ,g. Observe that, since |S—P| > 2t+4, we have r > h+1+k/2. Let

{A,B, X,-,-,a,-,-}eq, i=1,2,...,r,j=1,2,3, or 4,
{A,B, )’,‘j,b,’j}eq, i=l,2,...,s,j=l,2,
{A,B,Z“,Cﬂ}eq, i=l,2,...,k,
where X;;, Y, Z;;eS—P.
We will prove that there exists a partial parallel class of quadruples of
q having size t' > t. We will suppose that, for every begq, b & S— P (otherwise

n(v) > t, immediately).
At first, suppose that there exists ie{l, 2,..., r} such that

{an, an2, @33, A} S M 4.

Let i=1. If r>2, then consider the blocks {X;,, X;,, X;; x}eq for
Xll #Xij'-’éXZI and xeP. If

L= {Cn, Cafsenes Ckl}U{il, BisTis 01seens %y Brs T Qh}’

since the collection of the blocks {X;;, X,;, X;;, x} has size
m=22t—k—2s=2r+k+2h>4h+2+2k

and |L| = 4h+ k, there necessarily exists at least a block of type { X, X,,. X,
x} or {X,,, X5, Xij, x} such that x¢L. It follows that n(v) > t.

Ifr=1,then h=k=0,t=5+1,|S—P|=2t+4=25+6, v = 6s+10. If
s =0, then v = 10 and it is well known that n(10) = 2. If s > 1, let {X,,, Y;,,
X2, x}€q, {X 11, Y11, X113, X} €4. Since x # y, we can suppose x # y,,. Hence
it follows that there exists a block {4, B, W, w} eq, where X = X, (i, j) # (1, 1),
(1,2), or W= Y,;, w # x and w, x with the same first index. If b is the block of
n containing w and x and

n = (7[— 'b})U {{Aa B, u/, W}, {th Ylla Xlz’ X}},
then |#'| > t.
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Now, suppose that, for every i e{l, 2,...,r},
{1, 0, a3} S My  and g, ¢M yp.
We have r=2h+k+2. Consider the blocks {X,;, X;;, X;;, x}eq for
X;j# X11, X12, X153 and xeP. If L' = Lu {a,,}, since the collection of the

blocks {X,;, X132, Xi;, x} has size m=3(r—1)=6h+3k+3, and |L|
= 4h+k+1, there necessarily exists at least an X;; such that if

{Xll’ X129 Xija x}eq,

then xelL'. It follows that =n(v) > t.

At this point we can say that if t* = [(v—4)/6], then there exists a partial
parallel class containing at least [(v—4)/6]+ 1 blocks. Hence n(v) = [(v+ 2)/6].
The proof is complete.

From Theorem 2.1 we have
n(16) >3, =n(200=>3, =n(22)=>4, =(26)=4,
n(28) =5, =n(32)>=S5, =n(34)=6, =(38)=6,
n(40) =7, n(44) > 7, =n46)=>8, =(50)=>38,
n(52) =9, =n(56)=9, =n(58)=10, =(62)= 10,

--------------------------------

A\

3. Parallel classes in STS(19). In this section we will denote by 7n(19) the
largest number such that every STS(19) has a partial parallel class of size n(19).

THEOREM 3.1. Each STS(19) has a partial parallel class containing at least
Sfour blocks. '

Proof. It is immediate to prove that any STS(19) (S, T) has a partial
parallel class containing at least three blocks. Therefore, suppose

7 =1{{1,2,3},{4,5,6}, {7,8,9)} < T.
Let
P={1,2,3,.,9}, M={{x,y}:x, yeS—P, x #y}.

Since |M| = (120), there are exactly 45 blocks be T such_ that

bNn(S—P) =2 and |bnP|=1.
Let
M, ={{u,v}eM: {x,u,v}eT} for every xeP'.
Since |P'|=9 and [M,| >S5, it follows that [M,| =5 for every xeP'. If
{1,0, A}eM,, then there exists a pair of distinct elements

x,yeS—(P'u {0, A}) such that {2,x,y}eT. Hence =n(19)>4, which
completes the proof.
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- THeoreM 3.2. Each STS(19) has a partial parallel class containing at least
five blocks, ie., n(19) = 5.
Proof. Let (S, T) be an STS(19) and let n be a partial parallel class of
triples of T such that || = n(19). From Theorem 3.1 we have n(19) > 4.
Suppose that n(19) = 4. Let ’

P={1,2,..,9,0,4,B} S—P={C,D,E,F,G,H,I},
n={{1, 2,3}, {4, 5, 6}, {7, 8,9} {0, 4, B}},
M = {{x, y}: x, yeS—P, x # y}.

=),

there are exactly 21 blocks be T such that
bnPl=1 and |bNn(S—P) =2.

For every xe S—P let f,: (S—P)—{x} — P be the mapping such that f,(y) = z if
and only if {x, y, z} € T. Further, let (S, ®) be the idempotent commutative
quasigroup associated with (S, T).

(R) Observe that if

{ur, uu}’ {vr, v"}eM, {ul’ un} A {vl’ U"} = g,

Since

and
W@u'eu, VRv'ev,

then u,ven and u #v. .
Since |{ £,(»): ye(S—P)—{x}}| = 6 for every x € S— P, we can suppose that

{C, D, 1},

{C,E, 2}eT,

{C, F, 4}.

The following cases are to be considered:
(1) {C, G, 5}, @2 {C, G, 5}, 3) {c, G, 0},
{C, H, 3}€T, {C, H, 3}€T, {C, H, 3}€T,
{C, 1, 6}; {C, I, 7}; {C, I, 1};
@ {C, G, 5}, ©) {C, G, 5},
{C, H, 8}€T, {C, H, 0}€T,

{1, 1; {c, 1,- 7.
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Further, for every x e S — P there exist exactly three blocks be T such that
|bn P| = 2.
(1) If {D, F, x}eT, then xe{7,8,9,0, 4, B}. Let x="1. If
{G,H,u},{H, I, v}eT,
then
{u,v}n{0, 4, B} # D.
Since we can suppose {C, 7, 0}, {C, 8, 4}, {C, 9, B} e T, we necessarily obtain
n(19) = 5.
(2) We can suppose {C, 0, 6}, {C, 4,8}, {C, B,9}eT. If
{H, 1, x}, {D, G, y}, {E, G, z}, {F, H, t}eT,
then
x€{8,9,0, 4, B}, {y,z} ={4,7,0,4,B}, te{5,7,0, A, B}.
For x =8 [resp. x =9], we have {y, z} = {4, B}, hence ¢t = B [resp.
{y, z} = {4, A}, hence t = A]. Therefore we have n(19)>5 ({D, G, 4} or

{E, G, 4}, {C, 0,6}, {1,2,3}, {7,8,9}, {F, H, B} [resp. {F, H, A})).
For x =0 [resp. x = A, x = B], we have

{D, G, 4} or {D, G, x}eT.

It follows that {E, G, x} or {E, G, 4} € T, respectively. Necessarily, {F, H, 7} e T.
At this point we have n(19) > 5 with {F, H, 7}, {D, G, x} and {C, A, 8} for
x# A or {C,9, B} for x = A belonging to T.

(3) We can suppose that

{c,s,8},{C,6, 4}, {C,9,BleT.
If {D, I, x} €T, then xe {4, 8, 9, 0}. Further, if ye EQG, z = GRH, t = GQF,
w=F®I,u=EQ®I,v=I®H, then
{yv.z2}={4,7,A4,B}, y#:z, te{56,7,4,B}, we{56,8,9,0},
{u,v} = {4,8,9,0}, u#v.
For x = 8 it follows that {y, z} = {4, B}, hence w =9. Since
{C, 5,8}, {F, 1,9}, {E, G,4} or {G, H,4eT,

we have n(19) > 5.

For x=9 it follows that {y,zfy={4,B}. If y=B, z=A4 (or
y = A, z = B), we obtain t = 5, hence w = 6, and finally u = 8. At this point,
since necessarily I H = 4, we have =n(19) > §.

For x=4 [resp. x=0] it follows that {y,z}={4, A} [resp.
{y, z} = {4, 7}]. Necessarily we have

{G®I, E®I, F®I} = {8,9} [resp. EQG = GRH = T].
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In the remaining cases we will assume that

b~ {£,0): ye(S—P)—{u}}| <2
for every ueS—P, ben.
(4) We can suppose that

{C,0,3},{C, 4,6}, {C,B,9eT.
If {D,E, x},{F,G,y},{H,1,z}€eT, then
xe{3,0, 4, B}, ye{6,0,4,B}, z€{9,0, A4, B}.

We prove that |{x, y,z} n{3,6,9}| <1.Infact,if x =3 and y =6 (or x = 3,
z=9,0r y=6, z=9), then

{D,F,a},{D,G,e}eT for {a,e} <{0, A, B}.
If z=9, we have
{a, e, DQH, D®I} = {0, A, B};
if z#9, then
H®Ie{0, 4, B},

hence n(19) > 5. Therefore, let

x, y,z} n{3,6,9}| =1.
Suppose that x = 3. It follows that

F®G=HQ®Ie{0, A, B},
and further

{E®I, D®I} < {8,0, A, B} —{H®I}.

Now, it is easy to see that there exist two blocks ({F, G, F®G} and
be{{H,I,z},{E, I, EQI}, {D, I, D®I}}) satisfying the condition (R).
Necessarily, x = y = ze {0, 4, B}. Observe that

u®v #x for every {u,v}eM—{{D, E}, {F, G}, {H, I}};
further, we can consider
E®Fe{l,5}, D®Fe{2,5}, F®He{5,17},
- F®Ie{5,8}, D®He{2,7}, D®Ie{2,8}.

Since {C,3,0}eT and {E, F, 1} or {D, F, 2} €T, it follows that n(19) > 5.
(5) We can suppose that

{C,8, 4},{C,9,B},{C,3,6}eT or {C,8,4}{C, 3,9} {C,6, BleT.
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Observe that if {D, E, x}, {F, G, y}eT, then
xe{3,7,0}, ye{6,7,0}.
If x=3 and y =6, then
{D®F, DG} = {EQF, EQG} = {0, 7};
hence
{G®I, F®I, EQI, DRI} = {4, B}.
If x=3 and y=7 [resp. y = 0], then necessarily
D®H =E®H =0 [resp. DI = EQRI = T].
If x=17, then FRH =5, G®H = 4. Hence FRG = 7. It follows that
{FRI, HRI} = {4, B}  with =(19) > 5.
Finally, if x = 0, then
HQI =8, (F®I, FRG)e{(S,0), (0, 6)};
hence FQH = 7. Now we have
{C,8,4},{D,E,0}, {F,H, T}eT,

and so n(19) = S.
This completes the proof of the theorem.
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