FASC. 1

NATURAL DEFINITION OF ENTROPY OF SEMIGROUPS

 \mathbf{BY}

KRYSTYNA ZIEMIAN (WARSZAWA)

Introduction. The natural definition of entropy of semigroup given in this paper is a generalization of the notion of the entropy of \mathbb{Z}_+^N . This definition is based on some special properties of semigroups in \mathbb{Z}^N which are formulated and proved in this paper.

I would like to thank Dr. M. Misiurewicz for his help in preparing this paper.

Notation.

N — the set of positive integers.

 \mathbf{R}^{N} — the N-dimensional Euclidean space.

 $Z^N = \{(x^1, ..., x^N) \in \mathbb{R}^N : x^1, ..., x^N \text{ integers}\}.$

For $x, y \in \mathbb{R}^N$, B(x, y) denotes a ball with the center x and the radius y.

For $A \subset \mathbb{R}^N$, A^n is the set $A \cap B(0, n)$.

1. Geometric structure of semigroups in \mathbb{Z}^N .

Definition 1. By a convex cone in \mathbb{Z}^N we mean the set $\Lambda = \tilde{\Lambda} \cap \mathbb{Z}^N$, where $\tilde{\Lambda} \subset \mathbb{R}^N$ has the following properties:

- (a) $\forall x \in \tilde{\Lambda} \ \forall t > 0 \ tx \in \tilde{\Lambda}$;
- (b) $\tilde{\Lambda}$ is convex;
- (c) $\tilde{\Lambda}$ has positive Lebesgue measure.

If, in addition, Λ is open, Λ will be called an open convex cone in \mathbb{Z}^N .

Proposition 1. A convex cone in \mathbb{Z}^N is an additive semigroup.

Definition 2. $\forall B \subset \mathbf{Z}^N \ \Omega(B) \stackrel{\mathrm{df}}{=} \{z \in \mathbf{Z}^N \colon \exists n \in N \ nz \in B\}.$

The next two propositions follow directly from Definitions 1 and 2.

PROPOSITION 2. If $B \subset \mathbb{Z}^N$ is a semigroup, then so is $\Omega(B)$.

Proposition 3. If Λ is a convex cone in \mathbb{Z}^N and $B \subset \Lambda$, then $\Omega(B) \subset \Lambda$.

In the sequel, G stands for a fixed additive semigroup in \mathbb{Z}^N .

LEMMA 1. If Λ is a convex cone in \mathbb{Z}^N such that $\Lambda + g_0 \subset G$ for some $g_0 \in G$, then for each $h \in G$ there is $g \in G$ such that

$$\Omega(\bigcup_{n=0}^{\infty}(\Lambda+nh))+g\subset G.$$

Proof. Let $h \in G$. We have $\Lambda = \tilde{\Lambda} \cap \mathbb{Z}^N$, where $\tilde{\Lambda}$ has properties (a)-(c) of Definition 1. For $x \in \operatorname{Int} \tilde{\Lambda} \cap \mathbb{Z}^N$ there is $\varepsilon > 0$ such that $B(x, \varepsilon) \subset \operatorname{Int} \tilde{\Lambda}$. If $n_0 \in N$ is sufficiently large, then $h \in B(0, \varepsilon n_0)$. Hence $n_0x + h \in B(n_0x, n_0\varepsilon)$. In view of (a) of Definition 1, $B(n_0x, n_0\varepsilon) = n_0B(x, \varepsilon) \subset \tilde{\Lambda}$, so we have $n_0x + h \in \tilde{\Lambda}$. But $n_0x + h \in \mathbb{Z}^N$, so $n_0x + h \in \Lambda$. Putting $\lambda_0 \stackrel{\text{df}}{=} n_0x$ we have $h + \lambda_0 \in \Lambda$, and $\lambda_0 \in \Lambda$. We shall verify that the desired inclusion is satisfied for $g = g_0 + \lambda_0$. To this end it suffices to prove that

$$\Omega(\bigcup_{n=0}^{\infty}(\Lambda+nh))+\lambda_0\subset\bigcup_{n=0}^{\infty}(\Lambda+nh).$$

Let us fix $x \in \Omega(\bigcup_{n=0}^{\infty} (\Lambda + nh))$. By Definition 2,

$$x = \frac{\lambda + lh}{m}$$
 for some $l, m \in N$.

There exist $p, r \in N$ such that l = pm + r, r < m. Hence

$$x+\lambda_0=\frac{\lambda+rh+m\lambda_0}{m}+ph=\frac{\lambda+(m-r)\lambda_0+r(h+\lambda_0)}{m}+ph.$$

In virtue of Proposition 1 and Definition 1,

$$\frac{\lambda+(m-r)\lambda_0+r(h+\lambda_0)}{m}\in\Lambda.$$

LEMMA 2. If Λ is an open convex cone in \mathbb{Z}^N and $h \in \mathbb{Z}^N$, then $\Omega(\bigcup_{n=0}^{\infty} (\Lambda + nh))$ is a convex cone in \mathbb{Z}^N .

Proof. By assumption $\Lambda = \tilde{\Lambda} \cap \mathbb{Z}^N$, where $\tilde{\Lambda}$ satisfies the conditions of Definition 1. For all $A \subset \mathbb{R}^N$ we define the set

$$\tilde{\mathcal{Q}}(A) \stackrel{\mathrm{df}}{=} \{x \in \mathbf{R}^N \colon \exists t > 0 \ tx \in A\}.$$

We shall prove that $\tilde{\Omega}(\bigcup_{n=0}^{\infty} (\tilde{\Lambda} + nh))$ satisfies conditions (a)-(c) of Definition 1. It is easy to verify (a). To verify (b), let

$$x, y \in \tilde{\Omega}(\bigcup_{n=0}^{\infty} (\tilde{\Lambda} + nh)).$$

i.e. there exist s, t > 0 such that

$$sx, ty \in \bigcup_{n=0}^{\infty} (\tilde{\Lambda} + nh).$$

One can assume that sx, $ty \in \tilde{\Lambda} + mh$ for some $m \in N \cup \{0\}$. Let $\tau < 1$ be a fixed positive number. Obviously, there exist r > 0 and $0 \le \sigma \le 1$ such that

$$r(\tau x + (1-\tau)y) = \sigma sx + (1-\sigma)ty.$$

By the convexity of $\tilde{\Lambda} + mh$ we obtain

$$r(\tau x + (1-\tau)y) \in \tilde{A} + mh$$

and, consequently,

$$\tau x + (1-\tau)y \in \Omega(\bigcup_{n=0}^{\infty} (\tilde{A}+nh)).$$

The set $\tilde{\Omega}(\bigcup_{n=0}^{\infty}(\tilde{\Lambda}+nh))$ is of positive measure because it contains $\tilde{\Lambda}$. Finally, we prove the equality

$$\Omega(\bigcup_{n=0}^{\infty}(\Lambda+nh))=\tilde{\Omega}(\bigcup_{n=0}^{\infty}(\tilde{\Lambda}+nh))\cap Z^{N}.$$

Let $x \in \tilde{\Omega}(\bigcup_{n=0}^{\infty} (\tilde{\Lambda} + nh)) \cap \mathbb{Z}^{N}$, i.e.

$$sx = y' + mh$$
 for some $s > 0, y' \in \tilde{\Lambda}, m \in N \cup \{0\}$.

The set $\tilde{\Lambda}$ is assumed to be open, thus we can find $y \in \tilde{\Lambda}$ and positive integers p, q such that (p/q) x = y + mh. Therefore px = qy + qmh, where $qy \in \Lambda$, and this implies

$$x \in \Omega(\bigcup_{n=0}^{\infty} (\Lambda + nh)).$$

We have shown that

$$\tilde{\varOmega}ig(igcup_{n=0}^{\infty}(\tilde{\varLambda}+nh)ig)\cap Z^N\subset \varOmegaig(igcup_{n=0}^{\infty}(\varLambda+nh)ig).$$

The opposite inclusion is obvious.

One can easily prove the following

PROPOSITION 4. If $\Lambda = \tilde{\Lambda}_1 \cap \mathbf{Z}^N = \tilde{\Lambda}_2 \cap \mathbf{Z}^N$ is a convex cone in \mathbf{Z}^N , then $\mathrm{Int}\tilde{\Lambda}_1 \cap \mathbf{Z}^N = \mathrm{Int}\tilde{\Lambda}_2 \cap \mathbf{Z}^N$ and $\tilde{\bar{\Lambda}}_1 \cap \mathbf{Z}^N = \tilde{\bar{\Lambda}}_2 \cap \mathbf{Z}^N$.

Definition 3. Let $\Lambda = \tilde{\Lambda} \cap \mathbb{Z}^N$ be a convex cone in \mathbb{Z}^N . We define

$$\operatorname{Int} \Lambda \stackrel{\operatorname{df}}{=} \operatorname{Int} \tilde{\Lambda} \cap \mathbf{Z}^N \quad \text{ and } \quad \tilde{\Lambda} \stackrel{\operatorname{df}}{=} \tilde{\tilde{\Lambda}} \cap \mathbf{Z}^N.$$

THEOREM 1. If G contains a convex cone in \mathbb{Z}^N , then there exist a sequence (Λ_m) of convex cones in \mathbb{Z}^N and a sequence (g_m) of elements of G such that

- (a) $\Lambda_m \subset \Lambda_{m+1}$ for $m \in N$;
- (b) $\Lambda_m + g_m \subset G \text{ for } m \in \mathbb{N};$

(c)
$$\bigcup_{m=1}^{\infty} \Lambda_m \subset \Omega(G) \subset \bigcup_{m=1}^{\infty} \bar{\Lambda}_m$$
.

Proof. By assumption G contains a convex cone Λ in \mathbb{Z}^N . Put

$$\Lambda_1 \stackrel{\mathrm{df}}{=} \mathrm{Int} \Lambda$$

and choose an arbitrary $g_1 \in G$. Let us order the elements of G as follows: $e_1, e_2, \ldots, e_m, \ldots$ Put

$$\Lambda_2 \stackrel{\mathrm{df}}{=} \mathrm{Int} \big(\Omega \big(\bigcup_{n=0}^{\infty} \Lambda_1 + n e_1 \big) \big).$$

By Lemmas 1 and 2 the set Λ_2 is an open convex cone in \mathbb{Z}^N and there exists $g_2 \in G$ such that $\Lambda_2 + g_2 \subset G$. Suppose that an open convex cone Λ_m in \mathbb{Z}^N and an element $g_m \in G$ are constructed so that $\Lambda_m + g_m \subset G$. By Lemmas 1 and 2, we can define an open convex cone in \mathbb{Z}^N , namely

$$\Lambda_{m+1} \stackrel{\mathrm{df}}{=} \operatorname{Int} \left(\Omega(\bigcup_{n=0}^{\infty} (\Lambda_m + ne_m)) \right),$$

and we can find $g_{m+1} \in G$ such that $\Lambda_{m+1} + g_{m+1} \subset G$. As a result of the above-described construction we get the sequences (Λ_m) and (g_m) which satisfy — as we will prove — conditions (a)-(c) of the theorem. To check conditions (a) and (b) is immediate. We will inductively prove the inclusion

$$\bigcup_{m=1}^{\infty} \Lambda_m \subset \Omega(G).$$

By assumption, $\Lambda_1 \subset G \subset \Omega(G)$. Assume $\Lambda_m \subset \Omega(G)$ for some $m \in N$. Let $z \in \Lambda_{m+1}$, i.e. $pz = \lambda + ne_m$ for some $p \in N$, $\lambda \in \Lambda_m$, $n \in N \cup \{0\}$. By the inductive assumption, $\lambda \in \Omega(G)$. Consequently, $\Omega(G)$ being a semigroup (Proposition 2), we have $pz \in \Omega(G)$, so $z \in \Omega(G)$.

It is clear that $e_m \in \Lambda_m$ for $m \in \mathbb{N}$, so

$$G \subset \bigcup_{m=1}^{\infty} \vec{\Lambda}_m$$
.

By this inclusion and Proposition 3,

$$\Omega(G) \subset \bigcup_{m=1}^{\infty} \bar{\Lambda}_m.$$

COBOLLARY 1. If G contains a convex cone in \mathbb{Z}^N , then there exists a convex cone Λ in \mathbb{Z}^N such that $\operatorname{Int} \Lambda \subset \Omega(G) \subset \Lambda$.

Proof. We take

$$\Lambda \stackrel{\mathrm{df}}{=} \bigcup_{m=0}^{\infty} \bar{\Lambda}_{m},$$

where (Λ_m) is a sequence from Theorem 1

2. Natural definition of entropy. The semigroup G, as a subset of \mathbb{Z}^N , generates a subgroup of \mathbb{Z}^N isomorphic to $\mathbb{Z}^{N'}$ for some $N' \in \mathbb{N}$. Thus without loss of generality we can assume that G generates \mathbb{Z}^N .

PROPOSITION 5. A semigroup $H \subset \mathbb{Z}^N$ generates \mathbb{Z}^N iff H contains a convex cone in \mathbb{Z}^N .

Proof. Obviously, if H contains a convex cone in \mathbb{Z}^N , then H generates \mathbb{Z}^N .

Assume that $H \subset \mathbb{Z}^N$ generates \mathbb{Z}^N . This means, in particular, that there exist $h_1, \ldots, h_N, h'_1, \ldots, h'_N \in H$ such that

$$(1,0,\ldots,0)=h'_1-h_1, \quad (0,1,0,\ldots,0)=h'_2-h_2, \quad \ldots$$
 $(0,\ldots,0,1)=h'_N-h_N.$

Set
$$h = \sum_{i=1}^{N} h_i$$
. Then

$$(1, 0, ..., 0) + h, (0, 1, 0, ..., 0) + h, ..., (0, ..., 0, 1) + h \in H.$$

For $n \in N$ we define

$$\Delta_n \stackrel{\mathrm{df}}{=} \left\{ nh + (k^1, \ldots, k^N) \colon k^1, \ldots, k^N \in N, \sum_{i=1}^N k^i \leqslant n \right\}$$

and

$$\Delta \stackrel{\mathrm{df}}{=} \bigcup_{n=0}^{\infty} \Delta_n.$$

It is easily seen that $\Delta \subset H$ and Δ contains a convex cone in \mathbb{Z}^N .

By Proposition 5, G contains a convex cone in \mathbb{Z}^N which will be denoted by Λ_{\star} .

Definition 4. A subset $I \subset \mathbb{Z}^N$ is called a rectangle in \mathbb{Z}^N if there exists a $(z^1, \ldots, z^N) \in \mathbb{Z}^N$ such that

$$I = \{(x^1, \ldots, x^N) \in \mathbf{Z}^N \colon 0 \leqslant x^i < z^i \text{ for } i = 1, \ldots, N\}.$$

LEMMA 3. Let $\varepsilon > 0$ and let (n_l) be a sequence of positive integers such that

$$\lim_{l} n_{l} = \infty.$$

Then there exist

- (a) a rectangle I in \mathbb{Z}^N ;
- (b) positive integers l_1, \ldots, l_k and t_1, \ldots, t_k ;
- (c) $z_{i,j} \in \mathbb{Z}^N, j = 1, ..., t_i, i = 1, ..., k, such that$

$$I = \bigcup_{j=1}^{t_1} (G^{nl_1} + z_{1,j}) \cup \ldots \cup \bigcup_{j=1}^{t_k} (G^{nl_k} + z_{k,j}) \cup I';$$

the sets in this union are pairwise disjoint and

$$rac{\operatorname{card} I'}{\operatorname{card} I} < \varepsilon$$
.

Proof. This fact is proved (1) for the sequence (Λ^n) , where Λ is a cone in \mathbb{Z}^N . In particular, this lemma is valid for (Λ^n) when Λ is a convex cone in \mathbb{Z}^N from Corollary 1. Therefore, Lemma 3 remains true for the sequence $(\Omega(G))^n$. To complete the proof it suffices to prove the following

Proposition 6. We have

$$\lim_{n} \frac{\operatorname{card} G^{n}}{\operatorname{card} (\Omega(G))^{n}} = 1.$$

Proof. Fix $m \in \mathbb{N}$. Let $\Lambda_m = \tilde{\Lambda}_m \cap \mathbb{Z}^N$ be a convex cone from Theorem 1 and g_m an element of G such that $\Lambda_m + g_m \subset G$. Let $\Lambda = \tilde{\Lambda} \cap \mathbb{Z}^N$ be a convex cone from Corollary 1. Put $c \stackrel{\text{df}}{=} [\|g_m\|]$, where $\|\cdot\|$ denotes the Euclidean norm in \mathbb{R}^N . Since

$$\operatorname{card} G^n \geqslant \operatorname{card}((\Lambda_m + g_m) \cap B(g_m, n - c - 1)) = \operatorname{card}(\Lambda_m)^{n - c - 1},$$

we get

$$1 \geqslant \frac{\operatorname{card} G^n}{\operatorname{card} \left(\Omega(G)\right)^n} \geqslant \frac{\operatorname{card} G^n}{\operatorname{card} \Lambda^n} \geqslant \frac{\operatorname{card} \left(\Lambda_m\right)^{n-c-1}}{\operatorname{card} \left(\Lambda_m\right)^n} \frac{\operatorname{card} \left(\Lambda_m\right)^n}{\operatorname{card} \Lambda^n}.$$

We have

(1)
$$\lim_{n} \frac{\operatorname{card}(nA \cap Z^{N})}{n^{N}} = |A|$$

for any convex bounded set $A \subset \mathbb{R}^N$, where $|\cdot|$ denotes the Lebesgue measure. This is a simple consequence of measurability of such a set A in the sense of Jordan.

It follows from (1) that

(2)
$$\lim_{n} \frac{\operatorname{card}(\Lambda_{m})^{n-c-1}}{\operatorname{card}(\Lambda_{m})^{n}} = 1,$$

(3)
$$\lim_{n} \frac{\operatorname{card} (\Lambda_{m})^{n}}{\operatorname{card} \Lambda^{n}} = a_{m},$$

where
$$a_m = |(\tilde{\Lambda}_m)^1|/|(\tilde{\Lambda})^1|$$
. Since $\Lambda_m \subset \Lambda_{m+1}$ and $\Lambda = \bigcup_{m=1}^{\infty} \Lambda_m$, we get
$$\lim_m a_m = 1.$$

⁽¹⁾ See K. Ziemian, On topological and measure entropy of semigroups, Société Mathématique de France, Astérisque 51 (1978), p. 457-472.

According to (2) and (3) we have

$$1\geqslant \liminf_n \, \frac{\operatorname{card} G^n}{\operatorname{card} \big(\varOmega(G) \big)^n} \geqslant a_m \quad \text{ and } \quad 1\geqslant \limsup_n \, \frac{\operatorname{card} G^n}{\operatorname{card} \big(\varOmega(G) \big)^n} \geqslant a_m$$

for all $m \in \mathbb{N}$. It follows from (4) that the limit

$$\lim_n \frac{\operatorname{card} G^n}{\operatorname{card} (\Omega(G))^n}$$

exists and equals 1.

LEMMA 4. Let $\varepsilon > 0$ and let I be a rectangle in \mathbb{Z}^N . For $n \in \mathbb{N}$ large enough one can find $w_1, \ldots, w_s \in \mathbb{Z}^N$ such that

$$G^n = \bigcup_{i=1}^s (I+w_i) \cup (G^n)';$$

the sets in this sum are pairwise disjoint and

$$\frac{\operatorname{card}(G^n)'}{\operatorname{card}G^n} < \varepsilon.$$

Proof. Let I be a rectangle in \mathbb{Z}^N . Fix δ $(0 < \delta < \frac{1}{2})$. Let $m \in \mathbb{N}$ be so large that

$$a_m > 1 - \delta.$$

For $n \in N$ large enough we have

(6)
$$\frac{\operatorname{card}\left(\Lambda_{m}+g_{m}\right)^{n}}{\operatorname{card}\left(\Omega(G)\right)^{n}} > a_{m} - \delta$$

and, by (1), there exist $w_1, \ldots, w_s \in \mathbb{Z}^N$ such that

(7)
$$(\Lambda_m + g_m)^n = \bigcup_{i=1}^s (I + w_i),$$

the sets $I+w_i$, i=1,...,s, are pairwise disjoint, and

$$rac{\operatorname{card} igcup_{i=1}^{s} (I+w_i)}{\operatorname{card} \left(A_m + g_m
ight)^n} > 1 - \delta.$$

Since $(\Lambda_m + g_m)^n \subset G^n$, we have

$$G^n = \bigcup_{i=1}^s (I + w_i) \cup (G^n)'.$$

To complete the proof it is sufficient to estimate the expression $\operatorname{card}(G^n)'/\operatorname{card}G^n$. Using (5)-(7) we get

$$egin{split} rac{\operatorname{card}\left(G^{n}
ight)'}{\operatorname{card}G^{n}} &\leqslant 1 - rac{\operatorname{card}igcup_{i=1}^{s}(I+w_{i})}{\left(arOmega(G)
ight)^{n}} \ &= 1 - rac{\operatorname{card}igcup_{i=1}^{s}(I+w_{i})}{\operatorname{card}\left(arLambda_{m}+g_{m}
ight)^{n}} rac{\operatorname{card}\left(arLambda_{m}+g_{m}
ight)^{n}}{\operatorname{card}\left(arOmega(G)
ight)^{n}} < 1 - (1-\delta)(1-2\delta) \,. \end{split}$$

Let T denote an action of G on a topological compact (probabilistic) space X. Let A be an open cover (a measurable finite partition) of X. For each $B \subset G$ let

$$A_B \stackrel{\mathrm{df}}{=} \bigvee_{g \in B} (T^g)^{-1} A$$
.

 $H(A_B)$ stands for the topological (measure) entropy of the cover (partition) A_B .

We have shown (op. cit.) that

$$h(T,A) = \lim_{n} \frac{1}{\operatorname{card}(A_{\bullet})^{n}} H(A_{(A_{\bullet})^{n}})$$

is a well-defined entropy of A with respect to T.

THEOREM 2 (natural definition of entropy). The limit

$$\lim_{n} \frac{1}{\operatorname{card} G^{n}} H(A_{G^{n}})$$

exists and equals h(T, A).

Proof. Fix $\varepsilon > 0$. For $n \in N$ large enough we have

(8)
$$\frac{1}{\operatorname{card}(A_*)^n} H(A_{(A_\bullet)^n}) \leqslant h(T, A) + \varepsilon.$$

Let I be a rectangle from Lemma 3 constructed for ε and $((\Lambda_*)^n)$. By Lemma 4, for sufficiently large $n \in \mathbb{N}$ we obtain

$$G^n = \bigcup_{i=1}^s (I + w_i) \cup (G^n)';$$

the sets appearing in this sum are pairwise disjoint and

$$\frac{\operatorname{card}\left(G^{n}\right)'}{\operatorname{card}G^{n}}<\varepsilon.$$

According to (9), (8), and Lemma 3, we get

$$(10) \qquad \frac{1}{\operatorname{card} G^n} H(A_{G^n}) \leqslant \frac{1}{\operatorname{card} G^n} \sum_{i=1}^s H(A_{I+w_i}) + H(A) \varepsilon$$

$$\leq \frac{1}{\operatorname{card} G^n} s (t_1 H(A_{(A_{\bullet})^{n_1}}) + \ldots + t_k H(A_{(A_{\bullet})^{n_k}})) + \frac{\operatorname{card} I'}{\operatorname{card} G^n} H(A) + \varepsilon H(A)$$

$$\leq h(T, A) + 2\varepsilon H(A)$$
.

Hence, since ε is arbitrary, we obtain

(11)
$$\limsup_{n} \frac{1}{\operatorname{card} G^{n}} H(A_{G^{n}}) \leqslant h(T, A).$$

Now, let (n_i) be a sequence of positive integers such that

(12)
$$H(A_{g^{n_l}}) \leqslant \operatorname{card} G^{n_l} \left(\liminf_{n} \frac{1}{\operatorname{card} G^n} H(A_{G^n}) + \varepsilon \right)$$

for all $l \in \mathbb{N}$, and let I be a rectangle from Lemma 3 constructed for ε and the sequence (G^{n_l}) . For $n \in \mathbb{N}$ sufficiently large we have

$$(\Lambda_*)^n = \bigcup_{p=1}^r (I+z_p) \cup ((\Lambda_*)^n)',$$

where $z_p \in G$, p = 1, ..., r, and the sets in the sum are pairwise disjoint. In the same way as in (10), we obtain from (11) and (12) the inequality

$$\frac{1}{\operatorname{card}(\varLambda_{\bullet})^n} H(A_{(\varLambda_{\bullet})^n}) \leqslant \liminf_n \frac{1}{\operatorname{card} G^n} H(A_{G^n}) + \varepsilon.$$

Since ε is arbitrary, we get

$$h(T, A) \leqslant \liminf_{n} \frac{1}{\operatorname{card} G^{n}} H(A_{G^{n}}),$$

which combined with (11) completes the proof.

Reçu par la Rédaction le 22. 1. 1979; en version modifiée le 15. 7. 1979