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NATURAL DEFINITION OF ENTROPY OF SEMIGROUPS

BY

KRYSTYNA ZIEMIAN (WARSZAWA)

Introduction. The natural definition of entropy of semigroup given
in this paper is a generalization of the notion of the entropy of ZY. This
definition is based on some special properties of semigroups in ZV which
are formulated and proved in this paper.

I would like to thank Dr. M. Misiurewicz for his help in preparing
this paper.

Notation.

N — the set of positive integers.

RY — the N-dimensional Euclidean space.

ZN = {(z',...,z") e R": x, ..., oV integers}.

For z,y € RY, B(z, y) denotes a ball with the center x and the ra-
dius .

For A c RV, A" is the set AnB(0, n).

1. Geometric structure of semigroups in Z%.

Definition 1. By a convex cone in Z¥ we mean the set 4 = AnZ”,
where 4 = RY has the following properties:

(a) Ve e A YVt > 0 tx € 4

(b) A is convex;

(¢) A has positive Lebesgue measure.

If, in addition, A is open, 4 will be called an open convex cone in Z~.

PROPOSITION 1. A convex cone ¢n Z¥ is an additive semigroup.
Definition 2. VB<cZ¥ QB)Z [ze2”: IneN nzeB).

The next two propositions follow directly from Definitions 1 and 2.
PROPOSITION 2. If B < Z" is a semigroup, then so is Q(B).
PROPOSITION 3. If A is a convex cone in Z¥ and B < A, then Q(B) c A.
In the sequel, @ stands for a fixed additive semigroup in ZV.

LEMMA 1. If A is a convex cone in ZV such that A+g, = G for some
9o € G, then for each h € @ there is g € G such that

AU (A+nh)+g <@.

Nn=0
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Proof. Let h € G. We have A = AnZ", where A has properties (a)-(c)
of Definition 1. For # € Int AnZ" there is ¢ > 0 such that B(z, ¢) < IntA. If
n, € N is sufficiently large, then h € B(0, en,). Hence n,x + h € B(ny , nye).
In view of (a) of Definition 1, B(nw, ne) = n,B(@, &) = 4, 50 we
have n@+he d. But ng@w+heZ, so nyz+he A Putting A, = ne
we have h+ 4, € A, and 1, € A. We shall verify that the desired inclusion
is satisfied for ¢ = go+4,. To this end it suffices to prove that

AUJ (A + b)) + 3 < Q (A+nh).

n=0

Let us fix # € (| (4 + nh)). By Definition 2,

n=0

A+1h
xr =—
m

for some I, m € N.

There exist p,r € N such that | = pm+7r, r < m. Hence

A+rh+mi,

otig = SEAMA Ly A0t

p” ph.

In virtue of Proposition 1 and Definition 1,

2 _
+(m—r)dg+7(h+ 4) c A
m
LEMMA 2. If A i3 an open convex cone in ZV and heZ¥, then
Q(J (A+nh)) is a convex cone in ZV.

n=0

Proof. By assumption 4 = AnZ", where A satisfies the conditions
of Definition 1. For all A = RY we define the set

Q4) L @weRY: 3t>0 twec A}

We shall prove that (| (4+ nh)) satisties conditions (a)-(c) of Defi-
n=0
nition 1. It is easy to verify (a). To verify (b), let

8

w,y € Q(|J (Ad+nh)).

n

i.e. there exist s, ¢ > 0 such that

sz, ty € | J (A+nh).

n=0
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One can assume that sz, ty € A+ mh for some m e NU{0}. Let v < 1
be a fixed positive number. Obviously, there exist »r >0 and 0 < o<1
such that

r(ve+(L—1)y) = osw+(1—o0)ty.
By the convexity of A+ mh we obtain
r(w@+(1—7)y) € A+mh
and, consequently,
@+ (1 —1)y € QU (Ad+nh)).
n=0

The set 2(|J (A+nh)) is of positive measure because it contains A.

n=0

Finally, we prove the equality

.Q(C)o(/l—i-nh)) = Q{D(/i+nh))nzN.

n=0
Let x € Q(|J(A+nh))nZ7, ie.
n=0

12

v\ sx =y 4+mh for some 8 >0,y €4, me NU{0}.

The set A is assumed to be open, thus we can find y € A and positive
integers p, ¢ such that (p/q) ¢+ = y + mh. Therefore px = qy + gmh, where
qy € A, and this implies

z e Q(J(A+nh)).
n=90
We have shown that
QU (A+nh))nZN <« Q(\J(A+nh)).
n=0 n=0
The opposite inclusion is obvious.
One can easily prove the following

PROPOSITION 4. If A = A,nZ¥ = A,nZ¥ is a convex cone in ZV,
then Intd,n2ZY = IntA,n2ZY and A,nZY = A,n2Z".

Definition 3. Let 4 = AnZ" be a convex cone in Z¥. We define

IntA £ mtdnz¥ and A EAnzV.

THEOREM 1. If G contains a convex cone in Z~, then there exist a sequence
(4,,) of convex cones in ZV and a sequence (g,,) of elements of G such that

(@) A, = A,,,, for m e N;

(b) 4,,+9gn = @ for me N;

© Ud, < 2@ < U 4,.
m=1 m=1
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Proof. By assumption G contains a convex cone A in ZV. Put
A4, Y Inta

and choose an arbitrary g, € G. Let us order the elements of G as follows:
€1y Coyeny by ... PUb

4, 2 Int(Q(QoA,+m1)).

By Lemmas 1 and 2 the set 4, is an open convex cone in Z¥ and
there exists g, € @ such that 4,4+ ¢, = G. Suppose that an open convex
cone A, in Z~ and an element g,, € G are constructed so that 4,, +g,, < G-
By Lemmas 1 and 2, we can define an open convex cone in Z%, namely

A, Z Int(Q(Q(Am+nem))),

and we can find g,,,, € G such that 4,,,,+¢,,, = G As a result of the
above-described construction we get the sequences (4,,) and (g,) which
satisfy — as we will prove — conditions (a)-(c) of the theorem. T¢ check
conditions (a) and (b) is immediate. We will inductively prove tife inclu-
sion
U4, = 2(@).
m=1
By assumption, 4, =« G = Q(G). Assume A,, = 2(G) for some m € N.
Let zeA4,,,, i.e. pz = A+ mne, for some pe N, Aed,, neNU{0}.
By the inductive assumption, 4 € 2(G). Consequently, 2(G) being a semi-
group (Proposition 2), we have pz € 2(@), so z € 2(G).
It is clear that e,, € A,, for m € N, so
QG < J4,.
me=1

By this inclusion and Proposition 3,

@) = U4,.
m=1
OOBOLLARY 1. If G contains a convex cone in ZV, then there exists
a convew cone A in ZV such that Int A = (@) < A.

Proof. We take

oo

A2 4

m=0

m?

where (A,,) i8 a sequence from Theorem 1.
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2. Natural definition of entropy. The semigroup @, as a subset of
Z~, generates a subgroup of ZV isomorphic to Z" for some N’ € N. Thus
without loss of generality we can assume that @ generates Z%.

PROPOSITION 5. A semigroup H — ZV generates ZV iff H contains
a convex cone in ZV.

Proof. Obviously, if H contains a convex cone in Z¥, then H gener-
ates ZV.
Assume that H < ZV generates Z". This means, in particular, that
there exist h,,..., hy, hyy ..., hy € H such that
1,0,...,0) =h;—hy, (0,1,0,...,0) = hy—h,,
(0y...,0,1) = hyy—hy.

N
Set h = >’ h;. Then
=1

(1,0,...,0)+4, (0,1,0,...,0)+5,...,(0,...,0,1)+h € H.
For » € N we define

N
= {nh+(k1, O kY)Y L kNeN,Zk‘gn}
fm=1
and

4 £ U4,.
n=0
It is easily seen that 4 « H and 4 contains a convex cone in ZV.
By Proposition 5, @ contains a convex cone in ZV which will be de-
noted by 4, .

Definition 4. A subset I = ZV is called a rectangle in 2V if there
exists a (21, ...,2") € Z" such that

I={@a,...,2")eZ": 0<a' <2 fori=1,...,N}.

LEMMA 3. Let ¢ > 0 and let (n;) be a sequence of positive inlegers
such that
limn;, = oo.
l

Then there ewist

(a) a rectangle I in 2ZV;

(b) posztwe integers ll, oy b and tl, R

(e) 2 ,eZ,g_l ,,z—l k such that

I= U(G"’l+zl.,)u . U " 42, Y UI';
J=1 j=1
the sets in this union are pairwise disjoint and
card I’ <
&
cardl
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Proof. This fact is proved (!) for the sequence (A"), where A is a cone
in Z¥. In particular, this lemma is valid for (A") when A4 is a convex cone
in Z% from Corollary 1. Therefore, Lemma 3 remains true for the sequence
(2(@))". To complete the proof it suffices to prove the following

PrOPOSITION 6. We have

lim cardG* =1
» card(Q(@)

Proof. Fix m € N. Let A,, = A,nZ" be a convex cone from Theo-
rem 1 and g,, an element of G such that A,-+g,, < G. Let 4 = AnZ" be

a convex cone from Corollary 1. Put ¢ « [lgll], where |-|| denotes the
Euclidean norm in R”. Since

card@" > card((A,, +gm) OB (gm, #— ¢ —1)) = card(4,,)" ",

we get

cardG" _ cardG" - card (4,,)* °"! card(4,,)"

= =
1> card(2(®))* ~ card4A™~  card(4,)*  cardA®
We have
. card(nd NZY)
(1) lim ——— = |4]
\ n %
for any convex bounded set A = RY, where || denotes the Lebesgue

measure. This is a simple consequence of measurability of such a set 4 in
the sense of Jordan.
It follows from (1) that

card (A" _

@) o ard(A)
_card(4,)*
(3) h.:n cardA™ ™

where a,,= |(4,)!/|(A)!]. Since A,<Ay,, and A= J4,, we get

M=l
(4) lima, =1.

m

(*) See K. Ziemian, On topological and measure entropy of semigroups, Société
Mathématique de France, Astérisque 51 (1978), p. 457-472.
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According to (2) and (3) we have

cardG" card@"
1> liminf ———> d 1>k >
lmn Oal‘d(g(G))“ = a, an = m"sllp card(.Q(G))” Z Oy
for all m € N. It follows from (4) that the limit
card@"

» card(2(@)

exists and equals 1.
LEMMA 4. Let ¢ > 0 and let I be a rectangle in ZV. For n N large
enough one can find w,, ..., w, € Z~ such that

8
G = H(I+w;)U(G”)’;
the sels in this sum are pairwise digjoint and
card (G™)’
cardG"

Proof. Let I be a rectangle in ZV. Fix 6 (0 < 8 < }). Let m € N be
so large that

(8) ay >1—6.
For »n € N large enough we have

card (4, +gm)"
(6) card(Q2(@))"

>a,,,—-6 °

and, by (1), there exist w,, ..., w, € Z" such that

(7) (A +9m)" = U T +w;),

=1

the sets I+w;, 4 =1, ..., 8, are pairwise disjoint, and

card| ) (I ;)

i=1
>1—
card (Ap +gm)”

Since (4,,+ 9,)" = G, we have

@ = (I +w)u(6".

=1

To complete the proof it is sufficient to estimate the expression
card (@")' /ecardG". Using (5)-(7) we get
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8
card (")’ ~ cardgl(l +w;)
cardG® (@)
- ca.rdi=Ul(I+w1-) card (A, +g.)"

1— i (A o e[ Q@) <1—(1—8)(1—29).

Let T denote an action of G on a topological compact (probabilistic)

space X. Let A be an open cover (2 measurable finite partition) of X. For
each B c @ let

Ag L v ()4,

geB

H(Ag) stands for the topological (measure) entropy of the cover
(partition) Ag.
We have shown (op. cit.) that

BT, A) = lim —~ H(4

n card(4,)” (A.)")

is a well-defined entropy of A with respect to 7'
THEOREM 2 (natural definition of entropy). The limit
. lim 1 H(4 )
» cardG™® o
exists and equals h(T, A).
Proof. Fix ¢ > 0. For » € N large enough we have

1

(8) card (A,)"

H(A, ) <hT,4)+e.

Let I be a rectangle from Lemma 3 constructed for ¢ and ((4.)").
By Lemma 4, for sufficiently large n» € N we obtain

8

(9) " = I +w,)U(@")';

1=1

the sets appearing in this sum are pairwise disjoint and

card (G™)’
cardG"
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According to (9), (8), and Lemma 3, we get

1
(10) —— H(4y) < dGnZH(AI+w)+H(A)e

_ 1 cardI’
carage SHHEA , w)t o ARHA o))+ s H(A) +eH (4)

< (T, A)+2¢H(A).

<

Hence, since ¢ is arbitrary, we obtain

) 1
(11) lmisup WH(AG,,) < h(T, A).
Now, let (n;) be a sequence of positive integers such that
1
(12) H (Ao”l) < card@" (hmmf 3G H(4A )+ s)

for all 7 € N, and let I be a rectangle from Lemma 3 constructed for ¢ and
the sequence (G"). For n € N sufficiently large we have

@A,y = JI+a)u( Ay,
=1

where 2, €@, p =1,...,r, and the sets in the sum are pairwise disjoint.
In the same way as in (10), we obtain from (11) and (12) the inequality

1

1
———H(A inf ———H(A
card (4s)" (Aagn) < nm (Agn) +e.

card &

Since ¢ is arbitrary, we get
1
which combined with (11) completes the proof.
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