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Let % = (M, F) be an algebra with the underlying set M and with
the set ¥ of fundamental operations. The set of all algebraic operations
of the algebra U will be denoted by a() (for the definitions, cf. Section 1).

Higman and Neumann [7] proposed the following problem:

Does there exist a pair of groups ®, = (@;0,) and &, = (G; 0,) with
the same underlying set G and with the properties:

(i) 0, €a(®,) and o, € a(G,);

(ii) the operation o, on G coincides neither with o, nor with the
operation o, on @ defined by ao,b = b o,a for each a, b € G?

Hulanicki and Swierczkowski [8] have proved that the answer to
this problem is positive.

In the terminology introduced by Marczewski and Goetz (see [6]
and [11]) condition (i) can be expressed as follows: the identity mapping
on G is a weak isomorphism of &, onto ®,.

Nowlet ® = (@G;4+, —,A, V) and &, = (G; +,, —1, A1, V,) be a pair
of lattice ordered groups with the same underlying set @. For each g € G
we define binary operations -+ (¢) and +,(g) on G by putting

a+(9)+b =a—g+bdb and a-+,(9)+b=a—,9+,b
for each a,b e@. Obviously,
®(g) = (G;+(9), A, V) and ©,(9) = (G; +1(9)y Ay Vl)

are lattice ordered groups.
Let us consider the following conditions for ® and ®, :
(i) Ay Vyi€a(®) and A, v € a(®,).
(i,) For each g €@,

Ay Vi€a(B(g) and A, v ea(®,(g)).
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The partial order in ® and G, will be denoted by < and <,, respec-
tively. The positive cone and the negative cone of ® are the sets

Gt ={geG:9g>0} and G ={ge@:9g<0}

(0 denoting the neutral element of G). Let G and G; be defined analo-
gously (with respect to ®,).

In this paper the following question is investigated: which relations
between the partial orders < and <, are consequences of conditions (i,)
and (i,), respectively ?

The following results will be proved:

(A) If (i,) holds and if the neutral element of ® coincides with the neutral
element of ®,, then either

G+ —Gf and G —Gr
or
Gt =G and G =G.

(B) If (iy) holds, then < coincides either with <, or with >,.

Since the partial order in a lattice ordered group is uniquely deter-
mined by the group operation and by the corresponding positive cone,
we obtain from (A) as a corollary:

C) If® =(G; +, A, V) and ®, = (G; +, Ay, V,) are lattice ordered
groups with the same underlying set and the same group operation and if
(i,) holds, then < coincides either with <, or with >,.

The question whether (i,) is equivalent to (i,) remains open. (P 1065)

1. Preliminaries. We use the standard terminology for lattices and
lattice ordered groups (cf. [1], [2], and [4]). Let us recall the notion of
weak isomorphism of algebras.

Let A = (M; F) be an algebra with the underlying set M and with
the set F of fundamental operations. The operations ef” of the form

ej(n)(wn Bay eeey Tp) = @

are called trivial. The smallest family of operations on M containing all
trivial and fundamental operations and closed with respect to composi-
tions is called the family of algebraic operations and will be denoted by
a(N).

Let A, = (M,, F,) and A, = (M,, F,) be two given algebras, and
let  be a one-to-one mapping of the set M, onto M,. For each n-ary
operation f € a(,) we define an n-ary operation f* on the set M, by put-
ting

F¥(Cry €2y ey ) = @(f(@7 (€1), 97 (€2, -oey 97 ()
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for each n-tuple (c,, ¢,, ..., c,) of elements of M,. Analogously, for each
n-ary operation g € a(%U,) we put

9*(dy, day -y d,) = 979 ((d)), 9(da),y -y 9(dn))

for each n-tuple (d,, d,, ..., d,) of elements of M,.

The mapping ¢ is called a weak isomorphism of U, onto A, if for each
f€F, and each g € F, we have f* € a(%,) and g* € a(%,).

The notion of the weak isomorphism of algebras was introduced by
Goetz and Marczewski (see [6], [10], and [11]). Weak isomorphisms and
weak automorphisms of universal algebras and of special types of alge-
braic structures were investigated by several authors (see, e.g., Dudek
and Plonka [3], Traczyk [14], Senft [12], Sichler [13], the author [9]).
Glazek and Michalski [6] studied weak homomorphisms of algebras.

The notion of weak isomorphism of algebras A, and %, can be genera-
lized by supposing that there are given subsets F; < F, and F,c F,
and by assuming that for each f € F; and each g € F;, we have f* € a(%U,)
and g*ea(%,).

Let & = (G; +, —, A, v) and &, = (G,; +,, —1y A1y V,) be lattice
ordered groups and let ¢ be a one-to-one mapping of the set G onto G,.
Suppose that the relations

A*,v*ea(®,) and A}, viea(®)

are valid. Then ¢ is said to be a w-isomorphism of ® onto ®,.
Let ® = (G;+, A, v) be a lattice ordered group and suppose that
a,b,cy,cC,,...,c, belong to G. Then we have

a+\Ve;+b = \V(a+e+b) (1=1,2,...,n),

and dually. Hence and from the distributivity of the lattice (G; A, v)
we infer that each non-trivial binary operation f € a(®) can be written as

(1) flw,y) =A,vA,v...vA,,
where
(2) A‘ =BHI\B1‘2/\ P AB‘i,k(l’) (i =1,2’...’n),

(3) Bij = ngjz:j (t=1,2,...,m(,J)), nge {+, —},zfje{m,y}.

2. w-isomorphism of lattice ordered groups (special case). In this
section we assume that

® =(; +,A,v) and 6, =(Gy; +1y A1, Vi)

are lattice ordered groups such that
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(i) @ =Gy;

(ii) the neutral element of ® coincides with that of ®, (this element
will be denoted by 0);

(iii) the identity mapping on @ is a w-isomorphism of & onto ®,.

The case card@ = 1 being trivial, we suppose that G has more than
one element. Hence there are elements ¢,, g, € @ with 0 < g, and 0 <, g,.

According to (iii), v, and v} on @ coincide (and analogously for the
operations A,, v, A). There exists a non-trivial binary operation f € a(®)
such that

. &Vya, = f(a,, a,)

is valid for each pair (a,, a,) of elements of @. We can write f(z, ¥) as in
(1)-(3).

If m is an integer and g € G, then the multiplication mg in G will
have the obvious meaning; an analogous operation in @, will be denoted
by mog.

2.1. LEMMA. There exists an integer n, such that

al Vl 0 = nl al
18 valid for each element a, € G with 0 < a,.

Proof. Choose 0 < a, € G. In (1)-(3) we put # = a, and y = 0. Then
there are integers n,; such that for each B, we have

B‘ij = 'n/ij al .
Put

m® =min{n;, ny, ..., M5  and  n, = max{m®, m®, ..., m™}.
Hence |
A; =mPa, and f(a,,0) =n,a,.
It is obvious that n, does not depend on the particular choice of the
element a, > 0. T

Analogously we can verify the following assertion:

2.2. LEMMA. There are integers mg, my, My, Ny, Ny, Mm; and m, such
that

(a) a,A,0 = n,a, is valid for each a, € @ with 0 < a,;

(b) ayv,0 = n,a, and a,A,0 = nya, are valid for each ayc@ with
a, < 0;

(¢) byv0 =m,0b, and b,A0 =m,0b, are valid for each b, e@
with 0 >, b,;

(d) b,v0 = my0 by and bya0 = m,0 b, are valid for each b,e@
with b, <, 0.
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2.3. LEMMA. 7, > 0 =>n, = 1.
Proof. Let », > 0. Choose a, €@ with 0 < a, and put n,a, = c.
Then ¢ > 0, whence according to 2.1 we have
¢ =c¢v,0 =mn,c,
thus n, = 1.
Similarly we obtain
2.4. LEMMA. If n € {n,, m,, my, n;, Ny, m;, my} and n > 0, then n = 1.
2.5. LEMMA. 7, >0 = m, = 1.
Proof. Let n, > 0. According to 2.3, n, = 1. Choose 0 < a, €@G.
Then a,v,0 = a,,and thus a, >,0. We have
a; =a;,v0 =m0 a,,
whence m, = 1.
Analogously we get
2.6. LEMMA. m; > 0 = n, = 1.
Write
Gt ={9ge@:g>0} and G ={ge@:g>,0}.
The symbols G~ and G; have analogous meanings. From 2.3, 2.5
and 2.6 it follows
2.7. LEMMA. If n, > 0, then G+ = G;"; hence n; =0 and m; = 0.

2.8. LEMMA. nz > 0 = m1 == 0-
Proof. Let n, > 0. Choose a, € @, a, < 0. According to 2.4 we have

n, = 1, whence
asv,0 = a,.
Thus a, >, 0 and .
0 =ay,v0 = m, 0 a,,
whence m, = 0. .

2.90 LEMMA- ’”/1 =O 3’”/2 #0,”2 =0 =>n1 7&0-
Proof. Assume that n, = 0 = n,. Choose a,, a, € @ with ¢, < 0 < a,.
Then

alvlo - 0 == azvlo’
whence @, <, 0 and a, <, 0. Thus
a;v0 =myoa, and a,v0 = my0 a,.

Since a,v0 = a,, we obtain m, = 1. From a,v0 = 0 we get m; = 0,
which is a contradiction.
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Analogously we obtain

29.1. LeMMA. m; =0 =m, #0,my =0 = m, # 0.

2.10. LEMMA. Let n, > 0. Then n, « 0.

Proof. Suppose that n, < 0. Choose a,, 0 > a, € G. Then

ayA 10 = nya, # 0

and n,a, € G*. Thus, according to 2.7, n;a, € Gy ; on the other hand,
a,A,0 € G7, whence ayA,0 = 0, a contradiction.

2.11. LEMMA. Let n, > 0. Then n, = 0.

Proof. According to 2.5 and 2.8 we have n, < 0. Assume that n, < 0.
Choose a, €@ with a, < 0. Consider the following possibilities for 7,:

(a) my > 0. Then according to 2.4 we have n, = 1, thus a,A,0 = a,,
whence a, <; 0. Therefore a,v,0 = 0. Since a,v,0 = n,a, and n, <0,
we get n,a, # 0, which is a contradiction.

(b) m, = 0. Hence a,A,;0 = 0, thus a, >, 0. Then
ay = @,V 10 = n,a,,
and so n, = 1, a contradiction.

(e) n, < 0. This is impossible according to 2.10.
The proof is complete.

Analogously we have
m;>0=>my, =0.

By summarizing, from 2.3, 2.5 and 2.11 we obtain the following
assertion:

2.12. PROPOSITION. Let n, > 0. Then n, = m; =1 and ny, = m, = 0.

2.13. LEMMA. Let n, = 0. Then m, =1 and Gy = G*.

Proof. Choose a, such that 0 < a, € G. According to the assumption
we have
alv 10 = 0,

whence a, <, 0. Thus G* < G;. Moreover,
a, =a,v0 =my0 a,
and, therefore, m, = 1. For each b, e @ with b, <, 0 the relation
b,v0 =my,0 by, =0,
is valid, thus G; < G*. Hence G; = G*.
2.14. LEMMA. Let n, = 0. Then n, = 1.

Proof. According to 2.9, n, # 0. By 2.13 we have G* = G;. Assume
that n, < 0. Choose a, € @ with 0 > a,. Then

azv 10 - nzaz
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and n,a, € G*,n,a, #+ 0. Hence a,v,0eG@" =@G;. Thus a,v,0 =0,
which is a contradiction. Therefore n, > 0. Hence, according to 2.4, n, = 1.

2-15. LEMMA- Let nl — Oo Then m1 - O and m2 - 1-

Proof. Choose a,e@ with a, < 0. According to 2.14 we have a,v,0
= a,, whence a, >,0. Thus we have

0 =a,v0 =m,0 a,;

therefore, m, = 0. Hence and from 2.14 (by taking G, instead of G) we
get m, = 1.

By summarizing, from 2.13, 2.14 and 2.15 we obtain

2.16. PROPOSITION. Let n, = 0. Then m; = 0 and ny, = m, = 1.

2.17. LEmmA. If n, < 0, then m, < 0.

Proof. Assume that n, < 0. If m, > 0, then from 2.12 (and by re-
placing @ by G,) we get n, =1, a contradiction. If m,= 0, then by 2.16
(and taking @, instead of @) we obtain n, = 0, a contradiction. Hence
n, < 0 implies m, < 0.

2.18. PROPOSITION. 7, < 0 cannot hold.

Proof. Assume that %, < 0. Then by 2.17 we have also m,; < 0.
Choose b, e @ with 0 <, b,. Put ¢ = m, 0 b,. Then

b,v0 =m,0d, =c,
whence ¢ # 0, ¢ € @' NG5 . From ¢ € G; we obtain ¢v,0 = 0.
On the other hand, since ¢ € @+ and =, < 0, we have

¢v,0 =n,¢ #0,
which is a contradiction.

2.19. THEOREM. Let ® and ®, be lattice ordered groups fulfilling
conditions (i), (ii) and (iii). Let G % {0}. Then one (and only one) of the
following conditions holds:

(a) Gt =@ and G~ =Gy ;

(b) @t =Gy and G~ =G.

Proof. According to 2.18 we have either n, > 0 or n, = 0. If n, > 0,
then from 2.12 we infer that (a) holds. If n, = 0, then, by 2.16, (b) is valid.

2.20. COROLLARY. Let
G =G+, —A,Vv) and 6, =(G; +,, —1, A1y V1)
be lattice ordered groups such that
(«) Ay Vi€a(®) and A, v ea(®,).
Then < coincides either with <, or with >,.

2.21. Remark. It can be shown by examples that assumption («)
in 2.20 cannot be omitted.
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3. w-isomorphism (general case). Now assume that G and &, are
lattice ordered groups fulfilling condition (i) from Section 2. For each g € @
we put

G(@g)t ={he@G:h=g}, G(9)” ={he@:h<g},

Gi(9)" ={heG:h>,9}, G(9) ={he@:h<,g}.

3.1. LEMMA. Let ® and &, be laltice ordered groups with the same
underlying set G, card G > 1. Let g € G. Suppose that the relations

Ay Vi€a(B(g) and A, v eal(g)

are valid. Then one (and only one) of the following conditions holds:

(a1) G(9)* = G1(9)F and G(9)” =G1(9);

(b)) G(9)* =G.(9)” and G(g)~ =G4(9)".

Proof. According to the assumption, the identity mapping on @G
is a w-isomorphism of G(g) onto G,(g). Since ¢ is the neutral element in
both G, and G,, the assertion follows immediately from 2.19.

3.2. LEMMA. Let ® and ®, be lattice ordered groups with the same under-
lying set G. Suppose that, for each h € G, the identity mapping on G 18 a w-
1somorphism of ®(h) onto ®,(h). Let g,a,be@; g <a<b. If (a,) holds,
then a <, b. If (b,) i8 valid, then b <, a.

Proof. Let (a,) and (b,) be the conditions that we obtain from (a,)
and (b,) if we replace the element g by the element a. According to 3.1,
either (a,) or (b,) is valid. Suppose that (a,) holds. Hence g <, a, and thus
(b,) cannot be valid. Therefore, (a,) is true and this implies that ¢ <,
holds. The case where (b,) is valid is analogous.

3.3. LEMMA. Let ® and ®, be as in 3.2. Let g € G, card@ # 1. If (a,)
holds, then < coincides with <,. If (b,) 18 valid, then < 18 dual to <.

Proof. Suppose that (a,) holds. Let a,b €@, a <b. Choose u €@
with 4 < a and % < g. Let (a,) and (b,;) be the conditions that we obtain
from (a,) and (b,) if we replace g by the element . There exists g; € G
with g < g,. Hence from 3.2 it follows that (b,) cannot hold; thus, accord-
ing to 3.1, (a,) is valid. Hence and from 3.2 we infer 'that a < b is true.
The case where (b,) holds can be treated analogously.

3.4. THEOREM. Let
® =(G; +,—, A, Vv,<) and ®, = (G; +1, —1y A1y V1, <))

be lattice ordered groups such that, for each g € @,
(8) A and v belong to a(B,(g)),
(b) A, and v, belong to a(G(g)).
Then either <, coincides with < or <, 8 dual to <.
This follows from 3.1 and 3.3.
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3.4.1. Remark. If ® and &, are as in 3.4, then the operations+
and 4, on @ need not coincide; e.g., it can happen that the operation +
is commutative while the operation -, is not commutative.

3.5. THEOREM. Let
® =G +,—,A,v) and 6, =(Gy; +1, —15 A1y Vi)

be lattice ordered groups. Let ¢ be a w-isomorphism of ® onto &, such that
@ (0) is the neutral element in G,. Then either

(@) =G and @(G) =67
or
e(@Y) =Gy and @(G) =G.

Moreover, if +; coincides with -+, then @ i3 either an i8omorphism or
a dual isomorphism of the lattice (G; A, v) onto the lattice (Gy; A4y V).

This follows immediately from 2.19 and 2.20.
3.6. THEOREM. Let

=G +,—,A,v) and 6, =(Gy; +1, —1y A1y V1)

be lattice ordered groups, and ¢ a one-to-one mapping of the set G onto @G,.
Suppose that, for each g € G, ¢ is a w-isomorphism of G(g) onto ®(p(g)).
Then ¢ 8 either an isomorphism or a dual i3omorphism of the lattice (G; A, v)
onto the lattice (G1; A4y V).

This is a consequence of 3.4.
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