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IDENTITIES FOR GLOBALS (COMPLEX ALGEBRAS)
OF ALGEBRAS

BY

G. GRATZER anp H. LAKSER (WINNIPEG, MANITOBA)

The global P(MW of a universal algebra A = (4, F) is the family of all
nonvoid subsets (“complexes”) of A with operations given by

f(Ala seey An) = {f(aly LERE] au)' aieAi}

whenever f is an n-ary operation in F, and A,, ..., A, are complexes of A.
Note that if f is nullary, then its realization in P() is the singleton {f™}
subset of A determined by the realization of f in U We denote by PB,(N)
the analogous algebraic structure on the set of all subsets of A4, including the
empty set.

There is unfortunately no standard terminology or notation for the
above concepts. We follow essentially that in [3] and the references therein.
In [7], Bo() is called the power algebra of A and in [2], the complex
algebra. In [8], [9] and [1], B is called the complex algebra. In [5], both P
and R, are considered; P is denoted by Com* and P, is denoted by Com.
These works give necessary and sufficient conditions on the identities of a
variety in order that it be closed under the operations of ‘B and P, (see [7]
and [5] for a discussion of the differences between the various results). In
many ways the results in [S] are the most general, permitting infinitary
operations and also infinitary relations.

In this paper * we consider an arbitrary variety V of finitary algebras
and we determine the identities satisfied by the classes {B(2)| AeV! and
{PBo(W| AeV) in terms of the identities of V. We then incidentally obtain the
above-mentioned results as corollaries in the case of finitary algebras. We
apply our results to determine all the varieties determined by the globals of
varieties of lattices and of groups.

1. Globals of general algebras. Let V be a variety of algebras of type F,
where F is a set of operation symbols. Given any algebra 2 in V, identifying

* The research of both authors was supported by the Natural Sciences and Engineering
Research Council of Canada.
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the element a with the singleton {a} embeds A as a subalgebra of P(W) and
of Po(W. Thus V < P(V) and V < Py (V).

In the rest of this paper we restrict ourselves to the usual case where all
the operations in F are finitary, unless the contrary is explicitly stated. We
consider terms p (polynomial symbols in the terminology of [4]) in the
variable symbols vy, ..., v;, ... and operation symbols of F. A term p is said
to be linear if no variable symbol occurs more than once in p. An identity
p = q is said to be linear if both terms p and q are linear; it is said to be
regular if the set of variable symbols occurring in p equals the set of variable
symbols occurring in q. We use the notation p(x,, ..., x,) to signify that no
variable symbols occur in p other than x,, ..., x,; however, this does not
signify that any particular one of the x; actually does occur in p. If x,, ..., x,
are distinct variable symbols, the term that results from p(x, ..., x,) by the
(simultaneous) substitution of the term r; for the variable symbol Xx;,
i=1,...,n is denoted by p(ry,...,r,). In our work we will need only
substitute variable symbols for variable symbols where, in general, the same
variable symbol may be substituted for different variable symbols. It is
convenient to use the following formalism.

Let 1<m<n and let ¢: !{1,...,n)—{l,...,m}. Then from
p(xy, ..., X), with x,, ..., x, distinct variable symbols, we get the term
P(Xp(1)> -+ s Xpm) in the variable symbols x,, ..., x, by substituting x,
for x;.

The following two lemmas follow quite trivially by induction on the
complexity of the terms (see [5] for example).

LEMMA 1. Given two terms p(xy,..., Xn). and q(x, ..., X,), With
X1, ..., Xy distinct variable symbols, there are an integer n > m, a surjection

e: {1,...,n}={1,...,m},
and linear terms p'(xy, ..., X,), 9’ (xy, ..., X,) such that
P(x15 o5 Xm) = P (Xg(1)s -5 Xo(m)
and
q(xys ooy X)) = G (Xp(1ys -5 Xom)-

LeMMA 2. Given a linear term p(x,, ..., x,) with x,, ..., x,, distinct vari-
able symbols, an algebra W= (A, F) and subsets A,, ..., A, of A, we have

P(Ay, oy A) = {P(ay, ..., )] G4},

The last two occurrences of p in Lemma 2 denote, by abuse of notation,
the term functions on P(W) (or P, (W) and on A determined by the term p.
It should also be noted that the linearity of p is essential in Lemma 2. For
example, let A be a groupoid and let the term p(vy) be vyv,. Then, for a
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subset 4, with more than one element, the subset p(A4,) is {ab| a, beA,}
and not {p(a)| aeA,}.

For any variety V we denote by ‘B(V) (respectively, by ‘Bo(V)) the
variety determined by the class {P(W| AeV} (respectively, by
{Po(W| WeV}). The major result in this paper is the following proposition:

ProrposiTioN 1. Let x4, ..., x, be distinct variable symbols, let m < n, let
¢: {1,...,n} = {1, ..., m} be a surjection, and let p(x,, ..., X,), 4(X1, ..., X,)
be linear terms. If the variety B(V) satisfies the identity

P (Xg(1)s ++- x¢(n)),-'_= 4 (Xp(1)s -+ > Xp(m);
then there is a permutation @ on {1, ..., n} with on = @ such that the variety
V satisfies the identity
P(Xuc1ys <5 Xnmy) = q(X1, .00y Xy).

Proof. Let & be the free algebra in V on the distinct free generators
a, ..., a, and for each j =1, ..., m let the subset 4; of § be determined by
setting

A;=a;| o() =j}.
Then in P(F we have
P(Agtys -+ Apm) = 4(Agrys -5 Apm)-

Clearly, p(ay, ..., a) €p(Ayays ---» Apm)- By the linearity of g, Lemma 1
yields elements a,y), ..., Gyn With a,; €A, such that

p(ay, ... aw) = q(aa(1)s - -5 Gagm)-

That is, in view of the freeness of §, there is a mapping

a: {1,...,n} ={l,...,n} with pa=¢
such that V satisfies the identity
(1) P(X15 --o5 Xn) = q(Xa(1)s -+ Xa(m)-
Similarly, there is a mapping

B: {1,...,n} ={1,...,n} with pf =0
such that V satisfies the identity

(2) q(xl, ceey x,.) Ep(xﬂ(l), ceey Xﬂ(")).
Substituting x,; for x; in (2) and using (1) we conclude that V satisfies
(3) p(xlx ey xn) = p(xaﬂ(l)’ ooy xaﬂ(n))'

Successively substituting x,z; for x; in (3) and the resulting identities, we
conclude that V satisfies the identity



22 G. GRATZER AND H. LAKSER

(4) p(xl, ey xn) = p(xy(l)’ sy xy(n))

for any power y of af. But since {1, ..., n} is a finite set, there is a power y
of af which is idempotent, this is, which is the identity mapping on X
=Im(y). Since y is of the form y, B, it follows that B: X - f(X) is a
bijection. Since ¢f = ¢ and since {9~ '(j)| je{l,..., m}} is a partition of
i1, ..., n}, we conclude that

B: X () »B(X)ne ()

is a bijection for each j =1, ..., m. Thus the sets ¢~ '()— X and ¢~ '(j)—
—B(X) have the same number of elements for each j. Consequently, there is
a permutation n on {1, ..., n} with ¢n = 7 such that =n|y = By, that is, such
that ny = fy. Substituting x, for x; in (4) and substituting x4, for x; in (4)
we conclude that V satisfies the identity

p(xn(l)’ ceey xn(n)) = p(xﬂ(lb seey xﬂ(n))'
Combining this result with (2) we conclude that V satisfies

p(xn(l)a cecy xn(n)) = q(xl’ LR ] xn)
proving the proposition.
As corollaries to Proposition 1 we get the following two theorems:
THEOREM 1. Let V be a variety of finitary algebras. Then the identities
satisfied by R(V).are precisely those identities resulting through identification of
variables from the linear identities true in V.

Proof. That P(V) satisfies all the linear identities satisfied in V follows
immediately from Lemma 2. The theorem then follows from Lemma 1 and
Proposition 1 by observing that permuting the variables in a linear term
results in a linear term.

THEOREM 2. Let V be a variety of finitary algebras. Then the identities
satisfied by ‘Ro(V) are precisely those regular identities resulting through
identification of variables from the linear identities true in V.

Proof. We observe for any algebra U that P(A) is a subalgebra of
Po(2A) and the one element left out, @, is an absorbing element of P, (),
that is, that, for any fundamental operation f, f(4,, ..., 4,) = @ if some 4,
is @. It is then immediate (see, e.g., [6]) that the identities satisfied by R, ()
are precisely the regular identities satisfied by B(). Thus the identities
satisfied in B, (V) are the regular identities satlsﬁed in ‘B(¥). The theorem
then follows from Theorem 1.

Comparing Theorems 1 and 2, one is led to suspect that Theorem 2 can
be strengthened to say that the identities satisfied in P, (V) are the conse-
quences of the regular linear identities satisfied in V. There is, however, a
very simple counterexample to this hoped-for theorem. Observe, first of all,
that if there are no nullary operations in the type of ¥, then any consequence
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of a set of regular linear identities is balanced, that is, the number of variable

symbols, counting repetitions, occurring on each side is the same (see [7]).

A counterexample is then the variety V' of semigroups satisfying the identity

VoV = 0y, since R, (V) satisfies the identity v, v, = vy, Which is not balanced.
The following corollaries of Theorems 1 and 2 are immediate:
CoroLLARY 1. For any variety V of finitary algebras,

R(BWV)=R(V) and  Bo(Po(V)) = o (V).

CoroLLARY 2 ([1], [8]). Let V be a variety of finitary algebras. Then
R(V)=V if and only if V is definable by a set of linear identities, and
Vo (V) =V if and only if V is definable by a set of linear regular identities.

Proof. The result for ‘R is clear by Theorem 1. As for Ry, R (V) =V
implies, by Theorem 2, that all the identities of V' are regular. The corollary
then follows by observing that any nontrivial consequence of a set of regular
identities is regular.

The major question left unanswered in this paper is that of finding the
analogies of Theorems 1 and 2 for infinitary types. It seems unlikely to us
that these theorems, exactly as stated, would apply in the infinitary case;
indeed, it is doubtful that ‘B(P(V)) = P(V) or By (Vo (V) = Bo (V) in this
case. At the Universal Algebra and Lattice Theory Seminar here at the
University of Manitoba, Ervin Fried pointed out, however, that the first part
of the proof of Proposition 1 can be adapted to show that in the infinitary
case the identities satisfied in P(R(V)) are the consequences of the linear
identities of ¥ (and analogously for P, (R, (V))). Indeed, let the type of all
operations be less than the ordinal y. Starting with

‘B(“B(V))': p(x¢(l)9 sy xq;(n)a --°) = Q(x¢(1); ey x:p(n)’ )a (P: 'Y —"Ys
we get
“B(V“: p(xla cevy Xpy ) Eq(xa(l)’ ey xa(n)9 )

with o = ¢, as in the derivation of formula (1). Starting over again with this
result, we see that there are linear p’, ¢’ and y: y =y with

P(X1y ooy Xns o) = P (Xg(ays +ovs Xymys -+ 2)
and
q(Xaqrys -+ Xams -+ = @ (Xg(1ys -+ v Xyqnys +-2)-
We then get B: y =y with Yy =y and
VEQ (X1, ooy X o) =P (Xp1ys -5 Xpgmps -+ )

Since p(xy, ..., Xps -+ = P'(Xyc1)s - +» Xy(m» ---) is linear and yp = ¥, we con-
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clude that p'(xs), ..., Xpm, ---) is linear, establishing the result. Thus, in
the infinitary case,

B(B(B(D) = B(BV),
and similarly for ,.

2. Globals of lattices. Let V be a nontrivial variety of lattices. Then V
satisfies the set of linear identities X:

Vo V Uy =0, V U,

Vo AUy =0 A Dy,
(vo v 0y1) Vv, =0y v (0y vy,
(vo AVy) Avy =0y A (V) A D),

all of which are linear and regular, and so hold in both P(¥) and in B, (V).

THEOREM 3. If V is a nontrivial variety of lattices, then X is a basis for
the identities holding in PB(V) and in P, (V).

Before proving this theorem we present a sequence of lemmas.

We let & denote the lattice obtained by adding a 0 and a 1 to the V-free
lattice generated by the countable set {a;| i <w}.

LemMmA 3. Let x,, ..., x, be distinct variable symbols and let p(x,, ..., x,)
be a linear lattice term in which the variable symbol x, occurs. Then there are
choices ¢, ..., €,€{0, 1} such that the unary polynomial

f(x)=p(x, €y, ..., &)
satisfies the equality f(x) =x on §.

Proof. We proceed by induction on the complexity of p.

If p is the term x,, the result is immediate.

If pis p; v p, and x, occurs in, say, p;, then, by linearity, x, does not
occur in p,. Set all the variables in p, equal to 0 and, since none of them
occur in p,, the desired result follows from the truth of the result for p,.

The dual argument obtains if p is a meet.

LEMMA 4. Let p be a linear term. If V= p = q, then each variable symbol
that occurs in p also occurs in q.

Proof. If x, occurs in p(x,,..., x,) and not in q(x,, ..., x,), then,
substituting the ¢,, ..., ¢, given by Lemma 3, we arrive at the contradiction

p(ay, €, ..., &) = ay, =q(ay, &3, ..., &) €{0, 1}.

Lemma 4 thus implies that any linear identity holding in V is regular.

LEMMA 5. Let p=p, v p, and q = q, A q, be linear lattice terms. Then
the identity p=gq dqes not hold in V.

Proof. Let the distinct x,, ..., x,, n =2, be all the variable symbols
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occurring in p and g, and let x; occur in p,. Let V= p = q. Then, by Lemma
4, we can assume that x,; occurs in g,. Denote the set of variable symbols
occurring in a term t by var(t). Put

X =var(p,) nvar(q,), Y = var(p,)—var(q,),
U = var(q,)—var(p;), W = var(p,) nvar(q,).
Then, by Lemma 4,

var(p;)) = XU Y, var(p))=UuUW,

(*) var(q) = X O U, var(g)=YUW,

all these disjoint unions.

By definition, X is not empty. We show that neither are Y, U, nor W.

If W=0Q,then Y, U # @; set all variables in U to 1 and all variables in
Y to 0. Then p becomes 1, and q becomes 0, contradicting V= p =gq.

If U=0@, then X, W # Q; set all the variables in W to 1 and all the
variables in X to O, yielding the contradiction p=1, 4 =0.

W = @ is the dual situation.

Thus X, Y, U, W are all nonempty.

Substituting x for each variable symbol in X, y for each in Y, u for each
in U and w for each in W yields binary term functions p}, p3, 41, 4> on &
with

Py (x, y) v p2(u, w) = g1 (x, u) A g3(y, w).
Let y=w=1, x =a,, u=a,; we get

q1(ao, a;) = pi(ao, 1) v p3(ay, 1).

Now pj (x, 1) is x or 1, and ¢ (ao, a,) # 1; thus pj (a0, 1) = a, and, similarly,
p5(a,, 1) = a,. Consequently, g (a,, a,) = ao v a,. Similarly,

q2(ay, a3) =a, v ay, pi(ag, a;) =ae Aay, p3(a, a3)=a, A as.
Thus
(@o Aay) vi(az Aas)=(ap v ay) A(ay v ay),

which does not hold in any nontrivial variety of lattices, is true in &, where
ay, a,, a,;, a3 are free generators. This contradiction proves the lemma.

LEmMMA 6. Let x,, ..., x, be distinct variable symbols, let p(x,, ..., x,) be
a linear lattice term, and let m < n. Then either

p(ay, ..., a,,0,...,00=0
in & or there is a linear term q(xy, ..., X,) with

var(q) = var(p) N {xg, ..., Xp)
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and
p(al9 ceey Qmy 0, ey O) =q(als ceey am)
in §.

Proof. The proof is completely straightforward by induction on the
complexity of p. If p is the variable symbol x; and i < m, then q = p; if i > m,
then

p(ay,...,an,, 0,...,0 =0.

If p=p; v p, or p=p; A p,, then var(p;) Nvar(p,) = @, and the result
is immediate by using the inductive assumption that it is true for p; and p,.

Proof of Theorem 3. Let the linear identity p=gq hold in the
nontrivial variety V. We show that X |= p = q by induction on the sum of the
complexity of p and of q.

By Lemma 4 the identity p = ¢ is regular. Thus if one of p, q is the
variable symbol x;, then so is the other, and so X|= p =4q. Consequently,
without loss of generality, we may assume that p is a join-term; by Lemma §,
so is g. Thus, there arc linear terms p,, p,, q,, q, such that neither p, nor g,
are join-terms, such that

var (py) Nvar(q,) # @,
var(p,) nvar(p,) =@, var(q,) nvar(q,) =Q,
and such that

ZEp=pivp, ZEq=q V4,

Since V= X, we have V= p, v p, =¢q, v q,. With the notation like in
Lemma 5 we have (»), all unions being disjoint.

In § substitute 0 for x; if x;eU u W and g; for x; otherwise. Then in &
we have

pi(ay, ....a) =2y vz,
with z, = 0 or q;(a,, ..., a,), where ¢} is a linear term with var(q}) € X and
z, =0 or g5(ay, ..., a,), where g5 is linear with var(q3) =Y. Now 2z, =0
implies V= p =gq,, violating the regularity of linear identities since
@ # X cvar(p); thus z;, = ¢} (ay, ..., a,). On the other hand, z, # 0 implies
VE p, =4 Vv q5, a linear identity that violates Lemma 5 since p; is not a
join-term. Thus z, = 0, implying

pl(al’ RS ] an) =q’l(ala seey an)’

that is, V= p, =¢;. Since var(q;) < X, Lemma 4 implies that Y = Q.
Similarly, U = ). Replacing the variables in W by 0, we get V= p, =gq,,
and so, by the inductive hypothesis, Z'|= p; = g,. Similarly, replacing the
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variables in X by 0, we obtain X |= p,-= q,. Consequently, X |= p = q. Thus,
in view of Theorems 1 and 2, the proof is complete.

Although there are uncountably many varieties of lattices, we get the
following corollary:

CoRroOLLARY. There is exactly one nontrivial variety of globals of lattices.

3. Globals of groups. We consider groups as algebras whose type
includes the binary operation of multiplication, the unary operation ~! —
the inverse, and the nullary operation e — the identity.

Let 2, be the following system of identities:

(vov1) V2 = (v V),
evy = Vg, Uge = Uy,
(vovy)™ ' =vilvg
o) =0y, e !'=e.

These identities are all linear and regular and hold in any variety of groups.

LEMMA 7. Let V be a nontrivial variety of groups. If p=q is a linear
identity holding in V, then p = q is also regular.

Proof. Assume, to the contrary, that some variable symbol x occurs
in p and not in q. Then setting all the other variable symbols equal to e and,
if necessary, taking inverses yields the consequence V[ x = e, contradicting
the nontriviality of V.

THEOREM 4. Let V be a nonabelian variety of groups. Then X, is a basis
for the identities of R(V) and for the identities of B, (V).

Proof. By Theorems 1 and 2 and by Lemma 7, and in view of the fact

that any consequence of a set of regular identities is regular, we need only
show that any linear identity holding in V is a consequence of X,.

Let V= p = q with p = q linear, and so, by Lemma 7, regular. If either p
or q is nullary, then so is the other, and Z,E=p=e ZoFq=e; so
2o p = q. Otherwise, there are distinct variable symbols x4, ..., x,, a permu-
tation # on {1, ..., n}, and ¢(i), n()e{l, —1}, i=1,..., n, such that
(5) Lok p=x{ . gm,

(6) ok g = XIED x1E iz,

where, if one wants to be pedantic, one can define xyz to mean (xy)z. Thus
) Vi le(l) xez(l) L. x:(n) = xz((;()l ) x:((;()z)) L xz(&;n)).

For each i set x; =e for j # i, and get

Vi xf(i) = x;c(i)'
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Since x; = x;”! implies commutativity, we have
e(@=n@ foralli=1,..., n.

We next claim that whenever i <j we have n(i) < n(j), and so that = is the
identity permutation, that is, that x5 x4?...x5™ and xIfD xMH2) _ xnixm
are the same terms. For if i <j and n(i) > n(j), then, setting all x,, k # = (i),
n(j), equal to e in (7) yields '

i) = i
ViE x:(a)(.i)) x‘,,‘(’,')( ) = x‘,‘(’,‘,‘ ) x:(a{.i)),

that is, V i1s abelian.

. Consequently, by (5) and (6), Zo = p =4, proving the theorem.

Now let X, = Z, U {vov; = v, v5}.

THEOREM 5. Let V be a variety of abelian groups not of exponent 2.
Then X, is a basis for the identities of ‘B(V) and for the identities of Py (V).

Proof. We proceed exactly as in the proof of Theorem 4. If p=gq is a
linear identity satisfied in V, then it is regular. Then, as in Theorem 4, we
need only consider the nonnullary case. Then there are an n>1 and
distinct variable symbols x,, ..., x, and (), n( €{l, —1},i=1, ..., n, such
that '

L p=xXVP. 0, Eikg =X,

since the commutative law is in Z,. Now the identity x; = x; ! does not hold
in V; thus we get &(i) = (i), and so X, | p = q exactly as in the proof of
Theorem 4, completing the proof.

Finally, let X, consist of the identities

(vov1) vy = v(vyvy), evy =y,
VoV =0y 0g, Ug' =0p.

THEOREM 6. Let V be the variety of groups of exponent 2. Then X, is a
basis for the identities of P(V) and for the identities of Py (V).

Proof. Proceeding exactly as in the proofs of the preceding two
theorems, we find that if V| p=gq, then either Z,Ep=e, g=e or
2:;Ep=x,...X,, @ = X;...X,. In either case X, = p = g, proving the theorem.

CoRrROLLARY. There are exactly three nontrivial varieties of globals of
groups.
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