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ON RINGS OF DARBOUX FUNCTIONS
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RYSZARD JERZY PAWLAK (LODZ)

Problems connected with addition and multiplication of Darboux func-
tions were investigated in many papers (see, e.g., notes [2], [4], [9], [10], and
some chapters of monograph [1]). It is known that the maximal additive
family for the Darboux functions is the family of constant functions (see [1])
and that if f is a discontinuous Darboux function in Baire class 1, then there
exists a Darboux function ¢ in Baire class 1 such that f+g¢ is not a Darboux
function.

So, the question whether it is possible to form a ring of Darboux
functions, containing all continuous functions and a fixed Darboux function
£, seems to be interesting. This question becomes especially interesting when f
is not assumed to be a function in Baire class 1.

The present paper is intended to discuss this problem. In particular,
from Theorem 1 it can be inferred that there exist nonmeasurable Darboux
functions for which the formation of the ring described above is possible. The
method for proving Theorem 1 has not been chosen accidentally, which is
stressed in Theorem 2. However, not all problems concerning this question
are solved in the paper. Some questions the present paper gives no answer to
are embraced in the form of a problem following Theorem 2.

Theorem 3 of the paper is connected with the problem of extending the
topologies, and the result presented in it refers to those given in papers [5],
[6], [8], and [11]. * :

We use the standard notions and notation which were used in the
monograph of Engelking [3].

By R we denote the set of all real numbers as well as the space of all
redl numbers with the natural topology of line. By (R, ) we denote the
topological space of all real numbers with the topology .7 (different from the
natural topology).

Throughout the paper, we consider only real functions, i, all con-
sidered functions assumed their values in the topological space R.



290 R. J. PAWLAK

The symbols (a, b), (a, b], [a, b), and [a, b] (for a < b or b < a) denote
(respectively) open, left-sided open, right-sided open, and closed intervals in
R. We denote by f(a, b), f " '(a, b), f(a, b],f *(a, b], ... the images and
inverse images of those intervals to avoid superfluous brackets.

By m(x, y) we denote the middle-point of the interval (x, y).

Let xeR and A < R. Then by x < A (x > A) we denote the fact that, for
every acA, x <a (x> a).

The symbols A% and A denote (respectively) the derived set and the
closure of a set A < R.

Moreover, we use the following symbols:

C — the class of all continuous functions f: R — R;

C(7) — the ring of all continuous functions f: (R, .7) — R, where .7 is
some topology in R;

C, — the set of all continuity points of f (in the natural topology of
line);

D, — the set of all discontinuity points of f (in the natural topology of
line).

For a Darboux function f: R — R let RD(f) denote a class of all rings
K of Darboux functions (with the usual addition and multiplication of
functions) such that fe K and C c K.

Before discussing the results of this paper, we first give the following

DEerInITION 1. (a) We say that f: R — R is Young's function if for-every
point x,€ R there exist sequences {x,} and {x,} such that

Xy 7~ Xo, Xn “NXo, and  lim f(x,) = lim f(x;) =f(xo).
n— o n—aw

(b) We say that f: R — R is c-Young’s function if for every point xoe D,
and every & >0 there exists d,, >0 such that if I is a component of C,
and

<«
I'n(xg—05y, Xo+0xy) # D,

IO’
then

S A(f (xo) =, f (x0) +8) # O,

THEOREM 1. If f: R— R is a Darboux and c-Young’s function such that
D is a nowhere dense set, then the class RD(f) contains the ring C(7), where
g is some topology in R.

Proof. Put C; = R\D,. Let {I,} be a sequence of all components of C;
(remark that the components of C; are open and disjoint intervals).

Let xeD,.

It is easy to see that:
(¥) for every & > O there exists 8, > 0 such that if I is a component of C;

and I n(x—4,, x+6,) # @, then

S () —¢,f()+e) # B,



RINGS OF DARBOUX FUNCTIONS 291

Let {64} % , denote the sequence of positive numbers decreasing to zero
such that if I is the component of C; and

In(x—6%, x+6) # O,
then
f(f(x)—1/n, f(x)+1/n) # S.
Now we shall execute auxiliary constructions on the right side of x.
Consider two cases.

1° There exists a natural number n, such that I, =(x, a), where a is
some real number or a = + oc.
Then there exists a sequence {y**’}2, of elements from I,, such that

J N x  and f(yf“’)e(f(x)——f(m%)

Since, for every i =2, 3, ..., fis continuous at y{**), there exists a sequence
{lygﬁ,}iﬁz of natural numbers such that, for every i =2, 3, ...,
!

and, moreover,
1 1 1

l <yi l <yl l <yl‘l l
(x+) (x+) (x+) (x+)
Yi+1 Yi-1

for every i =3, 4, ..

yl+l+

2° The element x is not a left-hand endpoint of any component of Cj.
Let (k**)! be a sequence of natural numbers such that

x <I 4+ <x+6{? forn=12,...
n

(it is easy to see that {k**)) is an infinite sequence).
Let

te*) = min Im: (x+ 6, x+5§,’,"_1)mlk(x+, #@) forn=1,2,..

From the definitions of #*" and {6{°} we infer that (for every
n=1,2,...) the set

B 1 1
Ikslx+) nf! (f(x)"tgl),Tl,f(X)'l’E:,‘:‘l‘)

is nonempty. Denote by y""" (for n=1, 2, ...) an arbitrary element of the
above intersection.
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Now, for every n=1, 2, ..., let 1};*’ denote a natural number such that

x 1 X 1 - 1 l
(yi,,“ ,(,+,,y£ D+ 1(x+))CIk"mf ‘(f(x)—le,f(X)+E:+)—_l).

Finally, let 7, (x) = (kiF™): ") =m} for m = 2, 3, ... (it is possible that
7 (x) = O for some m, but for every natural number k there exists m > k
such that 7, (x) # Q).

In an analogous way we may make the corresponding constructions on
the left side of x, ie, if there exists a natural number n, such that I,
= (a, x), we define (analogously as in case 1°) sequences {y**}2, and
{l (- )2 55 if I, # (a, x) for every n, we define (analogously as in case 2°) the
sequences k™) and 7, yii 7 BT for n=1,2,..., and 1, (x) for m
=2,3,...

Moreover, for xel; = C; let k¥ denote a natural number such that

1 1
X—W, X+W CIS.

Now we define (for every xeR) a family B(x) of subsets of R in the
following way:
if xeCj, then we put

B(x) = {(x—1/t, x+ 1/t): t =k, k¥ +1, ...)

if xe D, and x is not an endpoint of any component of C/, then we put

1 1
B(x) = {Us(x) U U (y}(f,+)_ ’ Yixﬂ l(x+)+s)u,

+
(xH)eet(x) l’(‘; '+
(x—) _ 1 (x— )+ 1 fxl: s =2.3 .
U] U Yk, ,(,_,_'_ » Yk, I""’ U \Xj:85=2,3,...0;
kslx - )Et‘._ (x) kn +s
if xeD,; and for some natural numbers n, and n, we have I, =(ay, x)
and I, (x a,) (where a, and a, are real numbers or a, = — o0 and a, =

+ 00), then we put

B(x) = {Us(x) =U [( ) y P+ —)u
i=s Iysx+)+s l:,+,+s

1 1
(S" T4 Ulx):s=2,3,..5
Iygx_)"‘s ly(x_)“‘s

if xeDf, = (ay, x) for some natural number n,, and x is not a left-
hand endpoint of any component of Cj, then we put
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1 1
po={u=0| U (=g g )

(x+)

€T, (x)
1
(s“ e u{x}:s=2,3,--.};
l(x-)+ l(x-)+s
if xe Dy, I, =(x, ao) for some natural number ny, and x is not a right-

hand endpoint of any component of C}, then we define the family B(x) in a
similar way as in the above case.

It is easy to see that the family {B(x)},.x fulfils the conditions (BP1),
(BP2), and (BP3) of [3] (p. 24) and at the same time {B(x)},.x generates
some topology 7 (see [3], Theorem 1.2.2, p. 35).

We shall show that C(7)eRD(/).

First, we show that feC(Z). In fact, let x,eR and ¢ > 0.

If xoe Cy, then there exists a natural number n such that n > k" and

(xo—1/n, xo+1/n) Cf_l(f(xo)—ﬁ,f(xo)'*'ﬁ),

which means that the function f is continuous at x, in the topology 7
Now, we assume that xoe D,. Then let m; be a natural number such
that 1/m; <e.
We consider the neighbourhood U, +1(Xo) € B(Xo). From the definition

of Up, +1(xo) (see the definition of the family {B(x)},.g) we infer that

1 1
f(Um1+l(xO)) < (f(xo)_m_l’f(x0)+m_l> < (f(xO)-‘Eaf(XO)"'s)'

This proves that in this case f is a continuous function at x, in the
topology 7

Now, we shall show that if geC(9), {hen g is a Darboux function (in
the natural-topology).

Assume, to the contrary, that g is not a Darboux function. Then there
exist two points x; <x, such that g(x,) #¢g(x,) and there exists
ae(g(x,), g(x;)) such that a¢g(x,, x,). For instance, let g(x;) <g(x,).

Remark that

(1 {xe(xy, X21: g[x1, X) = (-0, @)} # B.

To see this we suppose first that there exists a component I, of C/; such
that I, o (x,, ¢), where ¢ > x, is some real number. Of course, g|(x,, ¢) is a
Darboux function. Observe that ¢ < x,. Really, since g is continuous at x,
(in the topology ), there exists s, such that Us,€B(x;) and g(U,) =

(—o0, a). From the definition of {B(x)},.x we deduce that

D # (xy, x)) " Uy < 1.
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Let xje(xy, x3) "Ug,. Then g(xj)e(— o0, a). To see that ¢ < x, assume to
the contrary that ¢ > x,. Then from the fact that g|(x,, ¢) is a Darboux
function we infer that aeg(x}, x,) < g(x,, x,), which is impossible. Thus
¢ < x,. Let xye(x, c)nUs,. Then since g(xj)e(—oc, «) and g|(x,, ¢) is a
Darboux function, we obtain g[x,, ¢) = (— o0, ). Thus we have just proved
(1) in this case.

Now we assume that x; ¢ C; and x; is not a left-hand endpoint of any
component of C;. By the continuity of g there exists a natural number s,
such that U, e B(x,), U, < x;, and g(U,,) = (—o0, a). Then

Uso m[xl9 +w)

© 1 1
(x1+) (x1+) 3.
- .U ( U (ykn _I(xl+) » Vi +I(xl+) ))U 1 X1y
i=s0 \kx1 Hlert (xy) k, TS50 k, 150

Let s, be an arbitrary "natural number greater than s, such that
7 (X)) # @ (see the remark after the definition of 7, (x)). Let

[e o}
(xpt+)
ke U on(xy)

i=sl+l
. (x1+)
and assume, for instance, that k! ers‘z)(xl). Put
Ikslxl+) =(a, b).

Of course, x; <b < x,. We show that g[x,, b) = (—o0, a). First we

(x1+)

remark that y, ' e U 1)

so» Which means that gy, )e(—oo,a). Thus, since
gl(a, b) is a Darboux function and a¢g(a, b), we have g(a, b) = (— o0, a).

Now, let I denote an arbitrary component of C; such that x; <I <a. Let

I = Ik(xl+).
w

It is easy to see that y;:v‘“e U,, and, consequently, g(yf;lﬂ) c(—o0, a),

which means that g(I) = (—oc, 2). Since I is arbitrary, we have
g(C_’fm[xla b)) C(_:x:', (X)-

Notice that for every xeD,n[x,, b) there exists a net {x,},csy of
elements of C; n[x,, b) such that
xelim x,
gel
(in the topology ), which means, according to the fact that ge C(Z) and
the above considerations, that g[x,, b) =(— o0, a). Thus we have proved
relation (1).



RINGS OF DARBOUX FUNCTIONS 295

It is easy to see that x,¢ |xe(xy, x,]: g[x;, X) =(—00, a)}.
Write

Yo = sup (xe(xy, x,]: g[x;, x) = (-0, 0‘)}~

We have x, <y, <x, and g[x;, yo) =(—o0, 2). We show that y,eD.
Suppose, on the contrary, that y,e C;. Let k be a natural number such that

X; <yo—l/k <yo+1/k <x, and (yo—1/k, yo+1/k) I,

where I’ denotes the component of C; such that y,el’. Then, by the
definition of y,, we have g(yo—1/k, yo) = (—oc, a) and there exists ze(yq, Vo
+ 1/k) such that g(z) > a. Since g|(yo—1/k, yo+ 1/k) is continuous in the
usual sense, g assumes value a for some point of the interval (y,— 1/k, y,
+1/k) = (x;, x,), which contradicts our assumption and proves that y,e D;.
From the definition of the topology .7 we infer that there exists a net
{Z,)aca Of elements of (x;, yo) such that
yo€limz,
acA
(in the topology 7). Since geC(J) and a¢g(x,, x,), we have g(y,)e
(— o0, @). Moreover, there exists a natural number s, such that U, (yo)€ B(yo)

and g (U, (yo)) = (=0, a).
In a similar way as for (1) (we put y, in place of x,) we can prove that

(xe(yo, x21: g[yo, x) = (-0, a)] # 9,

but this is impossible because y, =sup {xe(x,, x,]: g[x;, X) =(—20, 2)}.
The obtained contradiction completes the proof of the fact that g is a
Darboux function.

Finally, we shall show that if keC, then ke C(7).

Let ze R and ¢ be an arbitrary positive number. Then there exists é > 0
such that

k(z—6,z+0) = (f(2)—¢, f(2)+¢).

If ze C}, then, of course, k is also continuous at z in the topology 7. Now,
we assume that ze D ;. It is easy to see that there exists a natural number d
such that U,(z)eB(z) and U,(z) = (z—d, z+ ). Hence.

k(Uy(2) < (f (2)—e, f (2) +e).
This completes the proof.

Theorem 1 shows that there exist nonmeasurable Darboux functions for
which RD(f) # @.

Remark. The ring £ = C(J)eRD(f) defined in the proof of Theorem
1 has the following properties:



296 R. J. PAWLAK

(A) if pe #, then |p|e A.

If we additionally assume that D, = 5,, then

(B) if pe #, then C, = C,.

The method of proving Theorem 1 consisted in constructing a topology
J such that a ring of continuous functions in 4 belongs to RD(f), while
depends on the choice of sequences {y{*™’} and {y{*")} as well as on the
length of neighbourhoods of elements of these sequences. Let us denote by
K, the class of all topologies which can be constructed by means of the
method described in the proof of Theorem 1 (i.e., with different choices of
sequences {y(*~’}, {yi:"’} and different lengths of intervals corresponding to

them).
It turns out that in some cases the method presented in the proof of
Theorem 1 is not chosen accidentally, which is stated in the following

THeEOREM 2. Let f: R — R be a Darboux function such that (D;)* = Q.
Then a function g belongs to some ring #eRD (f) which fulfils conditions (A)
and (B) if and only if g is continuous in some topology 7,€K,.

Proof. If D, = @, then K, is a singleton because only the natural
topology belongs to K. In this case the proof of this theorem is obvious.

Thus we assume that D, # O.

Necessity. Let

. <x-2 <x_1 <x0<xl <x2< ven

be a sequence of all elements of D, (it is possible that the set D, is finite).
We shall show that there exists a sequence {y®*’} = (x,, x;) such that

PO N\ x4, and

(2) lim f(yP") =f(xo) and lim g(y™) = g(xo).

Write f; =f—f(xo) and g, =g—g(x). Since #cRD(f), we have
fi,91€Z. We put h =|f|+]|g,|- Then, by condition (A), we infer that he A.
Of course, h is in Baire class 1 and h is a Darboux function, and so h is
Young’s function (see [2] and [12]). Then there exists a sequence {y{°*’} of
elements of (x,, x;) such that

YO N x, and  lim h(y®P) = h(xe) = 0.
Therefore we have (2).
In a similar way we can prove that there exists a sequence {y°~’} of

elements of (x_,, xo) such that y°7) » x,, and

lim f(y?7) =f(xo) and lim g(y°7)) =g(xo).

n—a n—a
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In general, we can prove that for every k =0, +1, +2, ... there exist
sequences {y¥*)} and {y%7’} of points of the intervals (x,, x,,,) and
(Xk-1, %) (respectively) such that(!) y&* N\ x,, y*) ~ x,, and

lim f(y5") = lim f(y57) =1 (%)

and
lim g(y§*) = im g(y*™)) = g(x,).

n—a n—*a

Since every element of each of the sequences {y**1%  is a continuity
point of the function g in the natural topology (see condition (B)) for every k
=0, +1, +2, ..., the numbers l,(a +) (chosen in the proof of Theorem 1)

n

can be chosen in such a way that they fulfil all the required (in this proof)

(g £)
conditions, and moreover (we assume y*® = y**™)

1 1
k) _ () 4
g(,, l(k Tan " 1(ki)>

k + (k 1)
(g(y‘ki’) lg (xi) 2g(y( ))l g(yg,i))_'_lg( Xy) 2g(y )I)

if g(y%*) +#g(x)
and

1 1
g(g‘i)_ YL N
ly(k +) I(k )

1 1
c (g(xk)—;l, g(xk)+;) if g(y¥®) =g(x,).

According to our assumption and the proof of Theorem 1, sequences
{ykN=x  and {Lan} for k=0, +1, £2,... generate some topology
T,€K;. "

We shall show that g is continuous in the topology 7,. By the fact that
D, = D, condition (B), and the definition of T, it is sufﬁment to prove that
g is continuous (in 7)) at every dlscontmulty point of f. For instance, we
show that g is continuous at x, (the proof of the fact that g is continuous at
X, # Xo 18 very similar to the above one).

Let ¢ > 0. Then there exists a naturai number N such that 1/N < ¢ and,
for n> N,

g () e(g (xo) —¢/2, g (xo) +£/2).

(') If there exists m such that x,eD, and D, < x,, (x, < D,), then we put (x,, Xp+;)
=* (X,,,,.+®) ((xm-l’ xm) = (—Cl), xm))
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Consider Uy(xo)e B(xo) (see the proof of Theorem 1). Then
g(Un(xg)) (9 (x0)—¢, g(x0)+¢),

which means that x, is a continuity point of g in the, topology 7.
The sufficiency is a simple consequence of Theorem 1 and the Remark.
In connection with Theorem 2 we pose the following problem:

ProBLeM. (P 1326) Assume that, for some Darboux function f,
RD(f) # ©@. Then characterize a function g such that g belongs to some
ring e RD(f).

The partial answer to this question is contained in Theorem 2.

We assume the following notation:

B, — the class of all functions f: R — R in Baire class 1;

B,(J) — the class of all functions f: (R, ) — R in Baire class 1;

Dbx — the class of all Darboux functions f: R — R.

Now, we shall show that Theorem 1 (with the proof) can be applied to
solving some problems in connection with the extension of the topology.

In papers [5], [6] and [11] the following problem has been studied ():

Under what hypotheses on the topology 7 stronger than the natural
topology of line does the equality C = C(J) take place?

This problem suggests the following question: does there exist topology
J * stronger than natural topology of line such that

1°C&EC(T%),

2 B, = B,(J%),

3° C(7*) < Dbx?

The answer to this question is positive (see Theorem 3).

Before we formulate and prove Theorem 3 we assume the following
notation: for xe R let S(x) denote the class of all open local bases in x (in the
natural topology of line), and let % ,+(x) denote some open local base in x
(in the topology .77*).

THEOREM 3. Let A be an arbitrary nonempty, countable and closed subset
of R. Then there exists a topology 7 * stronger than the natural topology of
line, which fulfils conditions 1°-3° and such that 2 ;+(x)e S(x) for xe R\A and
B7+(x)¢S(x) for xe A.

Proof. Let {(a,, b,)} be a sequence of all components of R\A4 (it is
possible that, for some my, a,, = — oo or, for some m,, b,, = +00). Assume
that for every n

m(a,, b,) If —o0 <a,<b,< +o0,
cp,=<a,+1 if a,> —o0 and b, = 4+ o0,
b,—1 if a,= —o0 and b, < + 0.

(3) In [8] this problem has been investigated in general topological spaces.
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Let us define the function f: R — R in the following way:

0 if xeA,
1 :
sin if xe(a,, c,] and a, > — w0,
x—a,
1
sin if xe[c,, b,) and b, < + 0, a, > —oC,
x—2|c,— x| —a,
f)={ .. 1 :
f b - —
smx—2|c,,—x|—b,,+2 if xe[c,, b, and b, < + 0, a, 00,
1
NS it _
Smc,,—b,,+2 if xe(a,, c,] and b, < + 0, a, 00,
1
sin if xe(c,, b,] and b, = + 0.
L Cp—ay

It is easy to see that f is a Darboux and c-Young’s function such that
D, = A, and so D, is a closed and boundary set (ie., D, is nowhere dense).
Let 7* be some topology of class K, (defined before Theorem 2). Of course,
J* is stronger than the natural topology of line. It is easy to see that
B 5+(x)eS(x) for xe R\A and B 5+(x)¢S(x) for xe A. In the proof of The-
orem 1 we have shown that condition 3° is fulfilled and C = C(77*). More-
over, since fe C(J*)\C, condition 1° is also fulfilled.

Now, we show that condition 2° is fulfilled. Let ge B, (.7 *) and let a be
an arbitrary real number. Then there exists a sequence {g,} of continuous
functions in the topology 7 * such that

limg, =g.

k= o
Consider an arbitrary component (a,, b,) of R\A. Let {p”} and {q’} be
arbitrary sequences of elements of the intervals (a,, c,) and (c,, b,) (respective-
ly) such that p® \.a, and 43 ~b,. Then g,|[p%, g%’] is a continuous
function in the natural topology of the segment [p”, q»]. Moreover, it is
easy to see that

lim g, [P, g%

k —+a

=g|[pY, q'],

which means that g|[p{”, ¢\7] is in Baire class 1 in the natural topology of
the segment [p%, q%]. Hence the sets

{xe[pW, q%]: g(x) >a} and {xe[p{, g0]: g(x) <a}

are of type F, (in the natural topology of [p®, q'"7]), which implies that

{xe[p?, g% g(x) >a)} = U FP,
s=1
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and
{xe[pP, gd0]: g(x) <a} = U K3,

where F(, and K{; are closed subsets of [p%, ¢%'] < R.
Remark that

(an, by) = U [, 491,
which means that

{xeR: g(x) >a} = {xeA: g(x) >a} UJUUF®,

nm s

and
{xeR: g(x) <a} ={xeAd: g(x) <a} U UUKY.

n m s

Hence the sets {xeR: g(x) >a} and {xeR: g(x) <a} are of type F, (in the
natural topology of line), which implies that geB,.

We have shown that B, (7 *) < B,. The inverse inclusion is obvious.
This completes the proof.
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