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SOME REMARKS ON 7-SEMIGROUPS

BY

JANUSZ WOS (WROCLAW)

In this paper we deal with J -semigroups, i.e. semigroups 8 having
the property that every transitive representation of S by partial trans-
formations is a representation by one-to-one partial transformations.
Such semigroups were studied by Schein in [6]. As was shown in [6],
Theorem 1, and in [7], Section 2, Proposition 1, a semigroup S is a J-semi-
group if and only if every left unitary subsemigroup of S is unitary and
strong. In his paper [6], p. 116, Schein writes that it would be desirable
to find a simple criterion for a given semigroup to be a J -semigroup.
The aim of the present paper is to give such criteria for general semigroups
as well as for some particular classes of semigroups.

In Section 1 we give some basic definitions concerning representations
of semigroups. Next, in Theorem 1.1 we prove the main result of this
paper: a semigroup 8 is a J-semigroup if and only if every left unitary
subsemigroup of S is unitary.

In Section 2 it is proved that a finite semigroup is a J-semigroup
if and onmly if it has no non-trivial right-zero subsemigroups.

Section 3 is devoted to rogular semigroups. In particular, it is proved
that a regular semigroup is a Z -semigroup if and only if it is right in-
verse and pseudo-invertible (see Corollary 3.1). This result was obtained
by Schein ([6], Corollary 5) under the assumption that S is an inverse
semigroup.

1. 7 -semigroups. We quote here some definitions concerning repre-
sentations of semigroups. For standard semigroup terminology the reader
is referred to [2].

Every partial transformation ¢ of a set X can be identified with a bi-
nary relation ¢ on X ((#, y) € p if and only if ¢ transforms an element z
into y) such that for every « € X the set zp = {y € X | (%, y) € ¢} contains
at most one element. The product of two partial transformations coincides
with the product of binary relations, i.e. (#,y) egpoy if and only if
(v,2) ep and (2,y) ey for some z e X.



8 J. wos

Let # x be the semigroup of all partial transformations of X and let
X x be a subsemigroup of # x consisting of all one-to-one partial trans-
formations of X (the operation in these semigroups is the product goy).
A representation of a semigroup S by partial transformations of a set
X is any homomorphism P of 8 into Fx. If P transforms § into X'y,
we say that P is a representation by one-to-one partial transformations.
The transitivity relation tp of a representation P is the binary relation

1p = {(®,y) e X XX | (v, y) € P(a) for some a € S§}.

A representation P is called symmetric if 7p is symmetric (i.e. 1, = 151),
and tramsitive if 7p is universal (i.e. 7p = X XX). The symmetrant of a
representation P is a representation P defined by P(a) = P(a)nz® for
every a € 8. The symmetrant P is a symmetric representation.

The regular representation of a semigroup § is defined by the formula
P(a) = g,, where g, is a right translation of § (see [2], Section 1.3).

Let 8 be an arbitrary semigroup and let A and B be subsets

of §. Put
AB = |J{ab|a€ed,be B},

A'B ={aec8|A{a}nB #0), AB'={ac8|An{a}B %0},

If A = {a} or B = {b}, we shall write 4b, a~'b, etec.

A subset H of a semigroup 8 is called left [right] unitary if H'H < H
[HH™! € H], and unitary if it is both left and right unitary. A subset
H of 8 is called strong if, for every a,be 8, Ha 'nHb™' +#@ implies
Ha™' = Hb™ .

Now, let P be a representation of a semigroup S by partial trans-
formations of X. Put H, = {a € 8 | (%, ) € P(a)} for every x ¢ X. Every
such set H, is called a stabilizer of 8 relative to a representation P (see
[7], p. 24). It is known that every stabilizer is a left unitary subsemigroup
of 8 (see [7], Section 2, Theorem 2). Moreover, if P is a representation
by one-to-one partial transformations, then every stabilizer of 8 relative
to P is a unitary strong subsemigroup of 8 (see [7], Section 2, Proposition 1
and Theorem 3). In view of these facts the following lemma seems to be
interesting.

LEMMA 1.1. Let P be a representation of a semigroup S by partial trans-
formations of a set X. Then the following conditions are equivalent:

(i) the symmetrant P is a representation by one-to-one partial trans-
formations;
(i) every stabilizer of S relative to P is a unitary strong subsemigroup
of 8;
(iii) every stabilizer of 8 relative to P 18 a unitary subsemigroup of 8.
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Proof. The implication (i) = (ii) follows from the fact that the stabi-
lizers relative to P are exactly the stabilizers relative to P and from the
remarks preceding the lemma. The implication (ii) = (iii) is trivial.

For the proof of the implication (iii) = (i) let us take an arbitrary
a € 8§ and suppose that every stabilizer of § relative to P is a unitary
subsemigroup of 8. We will prove that P (a) is a one-to-one partial trans-
formation of X. Suppose that (@,2)eP(a) and (¥, 2) € P(a) for some
®,vy,2cX. Since P is symmetric, we have (2, #) e P(b) and (2, y) e P(c)
for some b, ¢ € 8. Hence

(@, z) € P(a)oP (b) = P(ab),
(z,y) e P(a)oP(c) = P(ac), and (y,=)cP(a)oP(b) = P(ab),

which implies (@, 2) € P(ac)oP(ab) = P(acab). Therefore, ab € H, and
acab € H,. Since the stabilizer H, is unitary, ac € H,, i.e. (z, ®) e P (ac).
On the other hand, (z,y) € P(ac), which implies # = y and completes
the proof.

A semigroup S is called a F-semigroup ([6], p. 113) if every transitive
representation of 8§ by partial transformations is a representation by
one-to-one partial transformations.

In the following theorem the equivalence of conditions (i)-(iv) is
known and it was proved in [6], Theorem 1. They are stated here for
eagy references in the next parts of the paper.

THEOREM 1.1. Let S be a semigroup. The following conditions are
equivalent:

(i) 8 is a T -semigroup;

(ii) every symmetric representation of S by partial transformations
18 a representation by omne-to-ome partial tramsformations;

(iii) the symmetrant of every represemtation of S by partial tramsfor-
mations i3 a representation by one-to-one partial tramsformations;

(iv) every left umitary subsemigroup of S is unitary and strong;

(v) every left umitary subsemigroup of S is unitary.

Proof. Since a symmetric representation is a sum of transitive
and null representations (see [5]), we have (i) = (ii). Clearly, (ii)= (iii).
Since the stabilizers relative to P are exactly the stabilizers relative to b,
the implication (iii) = (iv) follows from [7], Section 2, Theorems 2 and 3
and Proposition 1. Next, (iv)=(v) and (v)=(i) by Lemma 1.1, which
completes the proof.

From Theorem 1.1 we infer immediately that every abelian semigroup
is a J -semigroup, which was proved in [6], Corollary on p. 115.

The intersection of any family of left unitary subsemigroups of S
is a left unitary subsemigroup. Denote by {H) the smallest left unitary
subsemigroup of S containing a subset H < S and let <{a) = {{a}).
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COROLLARY 1.1. A semigroup 8 is a T -semigroup if and only if for
every a, b e S we have a € {ab, b).

Proof. Suppose that for every a,b eS8 we have a € (ab,b> and
let H be a left unitary subsemigroup of S. If ab, b € H for some a, b € S,
then {ab, b> =< H and, by the assumption, a € H. Therefore, H is unitary
and, by Theorem 1.1, S8 is a J-semigroup, which completes the
proof.

We shall need the following lemma which was proved in [7], Section 2,
Lemma 3, for the case § = §' and is obviously true in the general case.

LEMMA 1.2. b € {a) if and only if a™b = a" for some natural m and n.

By Corollary 1.1 a semigroup 8 is a J -semigroup if and only if every
left unitary subsemigroup of S generated by two elements is unitary.
Let us call a semigroup 8 a 7 ,-semigroup if every left unitary subsemigroup
generated by one element is unitary. The following example shows that
there exist J,-semigroups which are not J-semigroups.

Example. Let S be a free semigroup with » free generators (n > 1).
For a,be 8 (a #b) let H be the smallest subsemigroup of S generated
by ab and b. It is easy to see that H is left unitary but not unitary. On
the other hand, using Lemma 1.2 we see that every right cancellative
semigroup is a J,-semigroup. Therefore, S, being cancellative, is a 7 ,-semi-
group.

We shall need the following

LeMMA 1.3. Let 8 be a T ,-semigroup. Then for every a,be S with
ba = a there exists a natural number n such that a"b = a™.

Proof. If ba = a, then a, ba € {a). Since 8 is a J,-semigroup, we
have b € {a). By Lemma 1.2 there exist natural numbers m and » such
that a™b = a™. Hence a™*! = (a™b)a = a™*'. Therefore a"*'b = a™*'b
"+1 which completes the proof.

=a

COROLLARY 1.2. A left simple semigroup is a I -semigroup if and only
if it is a left group.

Proof. Obviously, every left group is a J-semigroup, which follows,
e.g., from Theorem 1.1 and from [2], Exercise 10 in Section 10.2. Con-
versely, let S be a left simple semigroup. If the set of idempotents ¥ of §
is empty, then a~'a = @ for every a € § (see [2], Lemma 8.3). On the
other hand, since § is left simple, we have aa~' # @ for every a € 8§.
Therefore, if S is a J-semigroup, then, by Lemma 1.3, we have E # @,
i.e. 8 is a left group.

2. Finite J -semigroups. Observe that a semigroup § has no non-
trivial right-zero subsemigroups if and only if ee! < e 'e for every
¢ € E. Hence it follows from Lemma 1.3 that every J -semigroup has no
non-trivial right-zero subsemigroups.
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We need the following lemma which can be also of independent
interest.

LEMMA 2.1. Let S be a semigroup having no non-trivial right-zero sub-
semigroups. Suppose that H is a left unitary subsemigroup of S having the
completely simple kernel K. Then H is a unitary subsemigroup of 8.

Proof. It follows from the assumption that the completely simple
kernel K of H is a left group. Now, suppose that ab, b € H for some
a, bef8. If k, € K, then bk, € K. Let k, € bk, K be such that bk,k, = e,
where ¢ = ¢? is the identity of the group bk,K. Put k¥ = k,k,. Then bk
= ¢, 50 abk = ae € K. Since K is left simple, there exists # € K such that
xae = ¢, which means that za € ee~'. Hence, by the observation given
above, we obtain za € ¢~'e. Thus ex, (ex)a € H and, since H is left unitary,
it follows that a € H, which completes the proof.

THEOREM 2.1. A finite semigroup is a I -semigroup if and only if it
has no non-trivial right-zero subsemigroups.

Proof. Let § be a finite semigroup having no non-trivial right-zero
subsemigroups and let H be a left unitary subsemigroup of 8. Since H is
finite, it has the completely simple kernel K. By Lemma 2.1, H is unitary
and, by Theorem 1.1, § is a J-semigroup.

3. Regular 7 -semigroups. Let S be an arbitrary semigroup and let
V(a) = {beS |aba = a and bab = b} denote the set of all inverses of an
element a € 8. A semigroup S is called regular if V(a) # @ for every
a €8, and 8 is called right inverse if it is regular and for any pair of in-
verses a’, a’’ € V(a) we have aa’ = aa’’. In [1], Theorem 3, it is proved
that 8 is right inverse if and only if each #-class of S contains a unique
idempotent. An orthodox semigroup is defined as a regular semigroup in
which the idempotents F form a subsemigroup. It is known that a regular
semigroup 8 is orthodox if and only if V(b)V(a) < V(ab) for every
a,b e 8 (see [3], Chapter VI, Theorem 1.1). Moreover, every right inverse
semigroup is orthodox (see [1], Theorem 7 (a)). These facts will be basic
in the sequel and will be used in our further considerations.

A semigroup 8 is called imwverse if for every a € S the set V (a) contains
exactly one element. It is well known that the symmetrant of the regular
representation of an inverse semigroup is a representation by one-to-one
partial transformations (see, e.g., the proof of the Vagner-Preston rep-
resentation theorem in [3], p. 135). The following lemma generalizes
this fact.

LEMMA 3.1. If 8 is a regular semigroup, then the following statements
are equivalent:
(i) the symmetrant of the regular representation of 8 is a representation
by ome-to-one partial transformations;
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(i) S s right inverse;

(iii) 8 has no mon-trivial right-zero subsemigroups;

(iv) efe = ef for every two idempotents e, f € 8.

In particular, a regular T -semigroup i8 right inverse.

Proof. The implication (iv) = (iii) is obvious. Next, the equivalence
(ii) < (iii) follows from the fact that for any pair of idempotents e, fe S
we have e®f if and only if {e, f} is a right-zero semigroup.

(1) = (iii). By Lemma 1.1 a semigroup 8 satisfies (i) if and only if for
every a, b, ¢ € 8 such that abc = a and ac = a we have ab = a. Obviously,
every such semigroup satisfies (iii).

(ii) = (iv). If S is right inverse, then it is orthodox and, by the above-
proved implication (ii) = (iii), it has no non-trivial right-zero subsemigroups.
Now, if e, f € B, then efe = ef; otherwise {efe, ¢f} would be a non-trivial
right-zero semigroup.

(ii) = (i). Let 8 be right inverse. First, we shall prove that for every
a,be8 and for every b e V(b) we have

(1) beH,~beH,,

where H, = {c € 8 | ac = a}. Obviously, it suffices to check that (1)
holds for every a € E. However, if ab = a and a € E, then, by the above-
proved implication (ii) = (iv), a = ab = abbb = abbab = abba = abb = ab
ie. beH,.

Now, let ¢, bec € H, for some a, b, ¢ € 8. Since 8 is orthodox, we infer
from (1) that ¢, ¢b € H, for arbitrary be V(b), ¢ V(¢). Hence be H,
and, by (1), b € H,. Therefore, by Lemma 1.1, 8 satisfies (i). This completes
the proof.

Observe that the symmetrant of the regular representation of a right
inverse semigroup is obtained by the restriction of g, to Saa’ = Sa’,
where a’ is an arbitrary fixed element of V (a) (see also Theorem 6 in [8];
in [8] right inverse semigroups are called left inverse).

The following theorem was proved in [6], Corollary 3, under the
assumption that S is orthodox. The general case can be easily deduced
from Lemma 3.1 and that corollary. However, using Theorem 1.1 we are
able to give a simple and direct proof of this theorem:.

THEOREM 3.1. A regular semigroup S i8 a T -semigroup if and only
if for every a € 8 and every a € V(a) there exists a natural number n such
that a"aa = a”".

Proof. Suppose that § is a regular J-semigroup and let a € § and
a € V(a). Hence (a@)a = a and, by Lemma 1.3, there exists a natural
number # such that a"(a@) = a™.

Conversely, assume that for every a € 8 and every a € V(a) there
exists a natural number n such that a"aa = a®. Hence, by Lemma 1.2,



for every a € 8§ we have
(2) V(a) = <(a).

Furthermore, if {e¢,f} = § is a right-zero semigroup, then fe V(e).
Hence, by assumption, ¢f = e. Therefore, § has no non-trivial right-zero
subsemigroups. By Lemma 3.1, S is right inverse, and hence orthodox.
Now, let H be a left unitary subsemigroup of 8 and let ab, b € H. We
infer from (2) that b@, b € H. Hence @ € H and, by (2), a € H. Therefore
H is unitary and, by Theorem 1.1, 8 is a J-semigroup. This completes
the proof.

An element a of a semigroup 8 is called pseudo-invertible if there is an
element @ € 8 such that a@a = a@a, a" aa = a™ for some natural number =,
and a@?a = a@. In [4], Theorem 1, it is proved that an element a € § is
pseudo-invertible if and only if some power of a lies in a subgroup of S.
A semigroup 8 is called pseudo-invertible if every element of S is pseudo-
invertible.

The following theorem was proved in [6], Corollary 5, under the
assumption that S is an inverse semigroup.

THEOREM 3.2. If 8 is a right inverse semigroup, then the following con-
ditions are equivalent:

(i) 8 ¢8 a T -semigroup;

(ii) for every a €8 the descending chain of principal right ideals
aS 2a28 2... 2a"8 2 ... 18 finite;

(iii) 8 is pseudo-invertible.

Proof. The implication (i)= (ii) follows easily from Theorem 3.1.

(ii) > (i). Let S be a right inverse semigroup satisfying (ii). Thus,
for a fixed a € § there exists a natural number n such that a**'§ = a™ 8.
Therefore a"*'#a™. Moreover, since 8 is orthodox, we have a"Z#a"a"
and a"t'Ra"t'@*t! for an arbitrary @ e V(a). Hence a™a"Ra™*'a"*’.
Since each #-class in a right inverse semigroup has a unique idempotent,
we obtain

(3) a*a® = a"*'a"*! for every a@c V(a).
Now, from (3) and from Lemma 3.1 (iv) we obtain
a®* = a"a@d*a" = a"*'a*+'a"® = a"(aa)(a"a"™) = a"(aa)(a"a")(aa)
= a"*1g**'a™(ad@) = a™a"a"(ad) = a"(ad).
By Theorem 3.1, 8 is a J -semigroup.

(i) = (iii). Let a €8, @ € V(a), and suppose that 8 is a J -semigroup.
By Theorem 3.1 there exists a natural number »n such that

(4) aad = a"
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and
(5) a“aa = a".

From (4) we obtain

a*(a*@") = a""}(a"ad)a" ! = a"la"ar"!
= a""(a"a@)a" ? = a" a"a" = ... = aa™a@ = a™ad=a".

Hence we have
(6) a*a"a" = a".

Analogously, (5) implies
(7) a*ata” = a".

Put b =a", b =a"a"a". Using (6) and (7) we obtain b*b = b,
b*b= b, and bb = bb. Therefore, b = a™ is pseudo-invertible, and so is a.

(iii) = (i). Suppose that 8 is pseudo-invertible and let a € 8. Hence
there is a natural number » such that a" € @,, where G, is a subgroup
of 8 with the identity e. Obviously, eZa™. Moreover, since 8§ is orthodox,
we have a"Za™a". Hence e®a™a"™ and, since 8§ is right inverse, a"a" = e.
Using Lemma 3.1 (iv) we obtain

4"l = a"ead = a"e(ad)e = a"e(ad)(a"a") = a"e(ada)a "' a"
= a"eaa" = a”".
By Theorem 3.1, 8 is a J-semigroup. This completes the proof.

By Lemma 3.1 a regular J-semigroup is right inverse. Hence

COROLLARY 3.1. A regular semigroup is a I -semigroup if and only if it
is right inverse and satisfies one of the equivalent conditions in Theorem 3.2.
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