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1. Introduction. Let F': [0,1] - R be approximately differentiable
with finite approximate derivative F,,. If DF = {x: F'(x) exists} and
AF denotes the interior of DF, then it is known [2] that AF is a dense
open subset of [0, 1]. Two recent papers [5] and [3] have investigated
the behavior of F,, over DF and AF. The more general result is contained
in [5], where it is shown that if [0, 1]\AF # @ (i.e., F' i3 not everywhere
differentiable in the ordinary sense) and M is any fixed positive integer,
then there is a component of 4F on which F’ takes on both M and — M.
Thus ¥,, takes on “much” of its variation over AF. From this observation
one might expect that F,, cannot be “well-behaved” over AF without
being also “well-behaved” over [0,1]. For example, if F,, is unisigned
or bounded over AF, then AF = [0, 1]. However, in this paper* it is shown
that this is not the case with regard to the summability (Lebesgue in-
tegrability) of F,,. Examples will be given which show that, even under
additional restrictions on ¥, the summability of F,, over AF does not
imply its summability over [0, 1].

In the positive direction, in Section 3, a theorem is proved to which
we have a corollary that F,, is summable over [0, 1] if and only if it is
summable over DF'. In addition, it is shown that for this type of problem
the appropriate set on which to study the behavior of F,, differs from
DF and AF. The natural set is 4* F which is the union of all open intervals
I = (a, b) satisfying:

(1) F is continuous for all # in (a, d).

(2) F is differentiable for almost all # in (a, b).

It is established that F,, is summable over [0, 1] if and only if it is
summable over A*F. '

* The author was supported by a research grant from the University of Wisconsin,
Milwaukee.
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2. Summability of F,, over AF. It is assumed that the reader has
some familiarity with the concepts and notation contained in [7]. The
notation W (F, I) will be used to denote the total variation of the function
F over the interval I. Further in this section we will make reference to
the theorem of Neugebauer [1] that F,, is summable over [0, 1] if and only
if F is absolutely continuous. The theorems in Section 3 improve this
result but the proofs are not dependent on it.

The examples mentioned in Section 1 require the following lemma:

LEMMA. Given an interval [a, b], a nowhere dense, perfect subset E of

(a, b), and M > 0, there exists a function F(x) on [a, b] such that
(i) Fop(w) exists on [a, b];

(ii) B = cl{z|F'(x) does not exist} = [a, b]\AF;

(i) Mb—a)<W(F, [a,b])<3M(b—a), and W(F,AF)<3M |AF|.

Proof. Let a’ and b’ denote the lower and upper bounds of ¥, respec-
tively, and let {C, = [a,, b,]} denote the sequence of intervals contiguous
to Z in [a', ).

In each interval C,, choose a sequence of closed intervals J, .,
k=1,2,...,such that

(1) Jur—a, as k — oo;
(2) each x e F is a point of dispersion of | JJ, ;.

n,k

On FE set F(v) = Mx—Ma, and on [a,, d,] define F(x) as follows:
Let L,(x) and L,(x) denote the lines through the point (a,, F (a,))
with slopes M and M +1, respectively. Let p,, be the abscissa of the

intersection of L,(x) with the line y = Mb, — Ma. Choose Jn, , to be the first
interval of the sequence {J,, ;} which lies to the left of p,, ,.

After choosing J, , for ¢ =1,...,m—1, let r denote the left-hand
endpoint of J, ,,_,. Let p, ,, be the abscissa of the point of intersection of

the lines L,(x) and y = Mr — Ma. Choose jmm to be the first interval of
{J .} which lies to the left of p, ,,. We note that (1) and (2) imply that

A

(3)  Jum = Gaj

(4) each # € F is a point of dispersion of | J J, .
Define F(x) on J, , as follows: o

(5) The endpoints of the graph lie on L, (x).

(6) Some point of the graph lies on L,(x).

(7) TFor each wed,,, L(r)<F(r)<< Ly(x).



SUMMABILITY OF APPROXIMATE DERIVATIVES 259

(8) The derivative F’(x) exists on Jn,m and the one-sided derivatives
exist and equal M at the endpoints.

(9) F(z) assumes no value more than 3 times on :I,,,m.

(10) As on E, we set F(x) = Mx—Ma at the remaining points of
(@ny by).

On [a, a’) and (b', b], let F'(x) be a strictly increasing, differentiable
function such that
(11)  F(a), F(a’), F(b'), and F(b)lieon y = Mz—Ma, F', (a) = F_(b)

=0 and F_(a’) = F, (V') = M.

Condition (i) of the Lemma follows from (4), (8), (10) and (11). We
infer from (3) and (6) that #’(a,) does not exist, and since {a,}5>., is dense
in FE, condition (ii) is established. The inequality M (b —a) < W (¥, [a, b])
follows easily from (11). By (9) and the manner in which the intervals

J,m were selected, it follows from (10) and (11) that F(x) assumes no
value more than 3 times on [a, b]. Thus

W(F,[a,b])<3M(b—a) and W(F,AF)<3M|AF|

and the proof of the Lemma is complete.

Definition. Given an interval I = [a, ¢], b = (a+¢)/2, E a nowhere
dense, perfect subset of (a, b), and M > 0, we say that a function F on
I is of type (I, B, M) if F is defined on [a, b] a8 in the Lemma and on
[b, ¢] by reflecting its graph in the line # = b.

From (11) one easily sees that if F' is of type (I, E, M), then

F(a) =F(c) = F'(a) =F'(b) = F'(¢) =0 and F(b) = M(b—a).

It follows from the Lemma that F,,(x) exists on I, that cl {x|F’ ()
does not exist} is ¥ along with its reflection F in # = b, and

MIII<W(F,I)<3M|I|, W(F,AF)<3M|AF|.

Since approximately differentiable functions satisfy condition (N)
(see Section 3) and since F is a continuous function of bounded variation
on I, F is absolutely continuous on I.

Example 1. There exists an unbounded, approximately differentiable
function F such that F,,(x) is summable over AF.

Construction. Let {I, = [a,,¢c,]}s>, be a sequence of intervals
such that I, -0 as n — oo and such that 0 is a point of dispersion of

U I,. Set
bn = (an'l' 0,,)/2-
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Let M, = n/|I,] and let E, be a nowhere dense, perfect subset of

(@, b,) such that if @, = I,\(E, UE',,), then |Q,,| 1/3M,-2".
On I, let F(z) be a function of type (I,, E,, M,) and set

Fx) =0 for xe@, = [0, 1]\UI

Since F(b,) = M,(b,—a,) = n/2, F is unbounded on [0, 1].
The approximate differentiability of F on (0, 1] follows from the
Lemma. At # = 0 it follows from the fact that 0 is a point of dispersion

of |JI,.

On any component of @,, the variation of F' equals 0. On @,,

W(F,Q,) <3M,Q,| <1/2".
Since

AF = OQn’

n=0
F,,(x) is summable over AF.

We note that since F(z) is unbounded, F is not absolutely continuous
on [0, 1], and thus F () is not summable over [0, 1].

Example 2. There exists an approximately differentiable ACG.,
function # such that F is summable over A4F but not over [0, 1]. More-
over, there is an everywhere differentiable function & such that F(z)
= G(z) on [0,1]\A4F.

Construction. Let I, = [a,,c,] = [n~, n" "2 4+2""] and set b, =
(a,+¢,)/2. It is easy to verify that 0 is a point of dispersion of | I,,.

L]
Let M, = 2"/n and let E, be a perfect subset of (a,, b,) such that
if @, = I,\(E,VE,), then |Q,| <1/3M,-2"
On I, let F be a function of type (I,,, E,, M,) and set

F(x) =0 on [0,I1N\L,.

The approximate differentiability of F on [0, 1] and its summability
over AF follows exactly as in Example 1.

Since F(b,) = M,|I,| = 2/n, F is not of bounded variation in [0, 1],
and thus F,, is not summable over [0,1]. However, F is AC over each
interval [(n +1)~'2, n~12] and is continuous at 0, since its graph is bounded
by the curve y = x? and the z-axis.

Let a, and b, denote the lower and upper bounds, respectively, of
E, in (a,, b,). On [a,, a,] and [b,, b,] set G(z) = F(x). On [a,,b,] put
G(z) = M,(x—a,) and reflect the graph in the line # = b,. Set

G(x) =F(z) =0 on [0,1\|JL,.
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It follows from the Lemma (especially, (11)) that @ is differentiable
on (0, 1] and that F(x) = G(x) on [0,1]\A4F. We have G'(0) = 0, since
its graph is also bounded by y = #? and the #-axis, and Example 2 is
complete.

3. Some conditions implying the summability of ', , . Before proceeding
to the first theorem it is necessary to mention some auxiliary prop-
erties of approximately differentiable functions. Any function, approxi-
mately differentiable on [0, 1], has associated with it a sequence of closed
sets E,, whose union is [0, 1], such that on each E, the function is abso-
lutely continuous [6]. Therefore, any approximately differentiable function
is Baire* 1 and Darboux (see [4]) and also satisfies Lusin’s condition (N).
(A function F': [0, 1] — R is Baire* 1 if every closed set has a portion on
which the restriction of ¥ is continuous.)

THEOREM 1. Let F: [0,1] — R be Baire* 1 and Darboux. Let
U(F) = int{x: F is continuous at x}.
Suppose that F has property (N) on U(F'). Let
P = {x: F' exists at x and F'(x) > 0}NU(F).
Then F i8 absolutely continuous if and only if the function F' is sum-
mable over P.

Proof. The necessity is obvious.
Sufficiency. Let

F(zx) if zelP,

9(@) = :
0 if x¢P.

Let
G(z) = [g(t)at.

Then G(x) is absolutely continuous and non-decreasing over [0, 1].
Let H(x) = G(x)— F(x). This new function is Baire* 1 and Darboux.
Further, if
U(H) = int{z: H is continuous at =},

then U(H) = U (F'). (It should be noted that U(H) is a dense open sub-
set of [0, 1], since F' is Baire* 1.) It is claimed that H (z) is non-decreasing.
By Theorem 1 of [4], p. 187, it suffices to show that H () is non-decreas-
ing over every component of U(F). Let I be such a component and let
[e, d] be a closed subinterval of I. Clearly, the function F satisfies the
hypothesis of Theorem 7.7 of [7], p. 287. Therefore, F' is absolutely con-
tinuous on [c¢,d]. In turn, this means that H is absolutely continuous
over [¢, d]. The function F is differentiable almost everywhere in [c, d].
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Further, G’ = g(z) for almost all « in [¢, d]. Let # be any point at which
both ' exists and G' = ¢g. Then H' exists at # and H' = g —F'. Now,
if x € P, then H' = 0, and if z ¢ P, then F' < 0 and ¢ = 0 so that H' > 0.
Consequently, H’ is non-negative at almost all points where it exists and
H is non-decreasing over [¢, d] (see [7], p. 286, second paragraph). Since
{e, d] was an arbitrary subinterval of I, H is non-decreasing on I. This
yields that H is non-decreasing and Darboux on [0, 1]. The function H
is therefore continuous on [0, 1], i.e., [0,1] = U(H) = U(F). But this
means that Theorem 7.7 of [7] can again be applied to F over [0, 1] to
establish that F is absolutely continuous on [0, 1].

COROLLARY 1. Let F: [0,1] — R have a finite approximate deriva-
tive F,, at each point of [0, 1]. Then F, is summable over [0, 1] if and only
if F,, is summable over DF = {x: F’ exists at z}.

Proof. The necessity is obvious.

Sufficiency. Clearly, if F,, is summable over DF, then F,, is sum-
mable over

P = {x: F' exists and F' > 0}nU (F).

Therefore, F' satisfies the hypothesis of Theorem 1 and is absolutely
continuous. Thus DF has measure 1 and F,, is summable over [0, 1].

At this point the behavior of F,, over a larger set than AF is considered
and shown to be more representative of the behavior of F,, over [0, 1].

THEOREM 2. Let F: [0,1] — R have a finite approximate derivative
F,, at each point of [0,1]. Let A*F be the union of all open intervals I
such that

(1) F 8 continuous on I;

(2) F 18 differentiable at almost all x in 1.

Then F, i8 summable over [0, 1] if and only if F,, is summable over
A*F.

Proof. The necessity is obvious.

Sufficiency. Clearly, 4*F is a dense open set, since AF < A*F.
Algo, if I is a component of A4*F, then F satisfies conditions (1) and (2)
on I. In fact, the summability of F,, over 4*F implies, by Theorem 1,
that 7 is absolutely continuous over the closure of the component I. The-
refore, A*F cannot have, in this case, any abutting intervals. If 4*F
= [0, 1], then the proof is completed. Assume instead that [0, 1]\ 4*F
= P + @. Then, from the above, P is perfect. The function F,, is Baire 1.
Thus there is an open interval (a, b) with (a, b))nP + @, and F,, is bounded
on (a, b)nP. However, then F,, is summable over (a,b)NP and also over
(a, b)\P, ie., F,, is summable over (a,b). Again by Theorem 1, F is
absolutely continuous on [a, b] and F satisfies (1) and (2) on (a, b). So
(a, b) = A*F, contradicting (a, b)NP #@.
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The next corollary is rather easy but serves a useful purpose. It illus-
trates that the type of examples given in Section 2 presents, in a sense,
the “only possible” such examples. More precisely, any approximately
differentiable function, non-absolutely continuous, but having F,, summa-
ble over 4F must behave on some subinterval like the function constructed
in the Lemma.

COROLLARY 2. Let F: [0,1] — R have a finite approximate derivative
F, at all points of [0, 1]. Suppose that F;, is summable over AF. Then either
F is absolutely continuous or there is an open interval (a, b) with

(i) (@, B)N\NAF| > 0;
(ii) F 48 continuous in (a, b);

(iii) P <8 differentiable almost everywhere in (a, b).

Proof. If |[A*F\ AF| = 0, then F,, is summable over 4*F, and hence
F is absolutely continuous.

If |A*F\AF|> 0, there is a component (a,b) of 4*F for which
(@, b)NAF| > 0. This component clearly satisfies (ii) and (iii).
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