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The question was raised several years ago at one of the Annual Spring
Topology Conferences in the United States as to whether there exists
a compact metric continuum which cannot be mapped onto the cone over
itself. The question was attributed by Howard Cook to the first-named
author, in connection with the results in [1], although he has no memory
of having asked it. This question is interesting since an example must
be intermediate between “nice” continua and “bad” continua, and such
continua are often difficult to study. Precisely, if X is a Peano continuum,
then so is C(X), the cone over X, and so each can be mapped onto the
other by the Hahn-Mazurkiewicz theorem. On the other hand, if X contains
an open set with uncountably many components, it can be mapped onto
the cone over the Cantor set, and hence onto the cone over any compact
metric space, itself included (see [1], Theorem II and Lemma, I, p. 14
and 15). '

A knowledge of the set-function 7' is assumed in one argument in
the sequel. For its definition and basic properties see [2]-[5].

In [6], the second-named author introduces a class of continua cal-
led quasi-Peano. A continuum X is quasi-Peano if there exists a compact
totally disconnected metric space D such that X is both a continuous
image and a continuous preimage of C (D).

For a given compactum X, denote by [z, t] a typical point in C(X),
where [z, 1] is the vertex for any z € X. If I denotes the closed unit inter-
val, then — referring again to the Hahn-Mazurkiewicz theorem — there
is a map u of I onto I XI such that x(0) = u(1) = (1, 1). (The restriction
that x(0) = (1,1) will not be used in the following argument, but will
be used in an example at the end of the paper.) Let u(t) = (u1(t), pa(?)).

THEOREM 1. For any compactum X, C(X) can be mapped continuously
onto C(X)xI, and hence onto C(C(X)).
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Proof. Define g: C(X) - C(X)xI by
glz, t] = ([z, g (D)], pa(D)).

g(z,1) = ([.’D, w1 (1)], .“2(1)) = ([w’ 1], 1)’

and so g is well defined; g is onto since if ([#, 8], t) € C(X) X I, then there
is a p € I such that u(p) = (8, ?), and so g[z, p]= ([z, ¢], t). The conti-
nuity of g is clear since the following diagram commutes and ¢ is an iden-
tification map:

Then

X xI s X xIxI

q qulI
\%

0(X) ——C0(X)xI

\

THEOREM 2. Assume that each of X and Y can be mapped onto the
other. Then X can be mapped onto C(X) if and only if Y can be mapped
onto C(Y).

~ Proof. By symmetry it suffices to prove only one assertion. Let
f: X—->Y and ¢g: Y - X be continuous and onto. If A: ¥ — C(Y) is
continuous and onto, then

C(g)o ko f: X — C(X)

is continuous and onto, where C(g): C(Y) - C(X) is the map C(g)[y, t]
= [g(y), t].

Thus, by Theorems 1 and 2, if X is a quasi-Peano continuum, then
X can be mapped onto C(X). The second-named author gives an example
of a non quasi-Peano continuum in [6], and this turns out to be an example
of a continuum X which cannot be mapped onto C(X). For a geometric
construction and picture of this continuum, see [6]. A quick construction
is given here.

Example 1. A metric continuum X which cannot be mapped onto
its cone.

Let A denote the one-point compactification of C(w+1) X w, where
o is the first infinite ordinal. Let v denote the vertex of C(w+1). The
continuum X is obtained from A by identifying (v, n) with ([»—1, 0], 0)
for each » > 1 and the compactification point p with the point ([w, 0], 0).

Let B = C(X) be the cone over the set

{0, M}pmgU i@, 01,0} (o {0, n}ueyU{P))-
It is easily seen that 7'(B) is the cone in C(X ) over UL,, where L;

is the limit continuum in C(w+1) X {¢}. Observe that if <M Dic, is a se-
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quenge of Peano continua in O(X) such that lim M; is a -gingle point,
then T'(B) — B cannot be contained in (_j M,. Indeed, if so, then

=1

TBys U M,v{q}, where ¢ =1lim M,,
=1 :

i—00

since | J M,;U{g} is closed and C1(T(B)— B) = T(B). However, U M,U {¢}
t=1 =1
is locally connected except possibly at ¢, whereas any subset of O(X)
containing 7'(B) must fail to be locally connected at all points of the form
[p,t] for t < 1.
To prove that there is no map of X onto C(X), suppose that f is such

a map. By Lemma 14 of [2], p. 587,
Tox)(B) < fTxf~'(B),

where the subscripts on T denote the continuum with respect to whose
topology T is computed.
Now, observe that

Txf*(B) < fB)U( U L)

n=0

(by, for example, the remarks in the second section of the introduction
of [4]), so that

fTxf-'(B) < BUF(JL,) and Toux(B) < BU(LJF(L,)).

n=0 n=0

However, {f(L,)}:., i8 a sequence of Peano continua converging
to a point f(p), and by the observation above,

T(B)—B & gf(Ln),

a contradiction.

Finally, there are non-quasi Peano continua which can be mapped
onto their cones; the argument which follows shows that the usual curve
sinz~! can be so mapped. The curve sinz~! can be obtained from (w+41) X I
by identifying (n, 1) with (n+1,1) for » odd and (n, 0) with (n41, 0)
for n even. Denote the identification map by %, let ¢: 8 xI — C(8) be
the usual quotient map, and let u: I - IXI be the map introduced
above. It is clear that if n(2) = n(y), then

go(nx1lp)o (1, Xu)(®) =qo (npx1;)o (1w+1X/£)(?[),
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8o that a continuous surjection g exists completing the following diagram:

1]
(2]
(3]

(4]
(5]

(0+1) XTI 2o (6 +1) x I xI

y)xll
" 8 xI
iﬂ
f . E— LA > 0(8)
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