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1. Introduction. In this paper we give some applications of the variation-
al principle of Ekeland [5] to optimization problems on complete Rieman-
nian manifolds. The optimization problems presented here are global ver-
sions of some problems already treated on Banach spaces [6]. They are
motivated by specific problems on Riemannian manifolds such as the prob-
lem of the minimal geodesics joining two closed subsets.

In order to apply the variational principle of Ekeland we shall work
only with complete Riemannian manifolds (in view of [15] the hypothesis of
completeness is essential).

In Section 2 we start with the problem of the minimal geodesics with
variable endpoints. First, for finite-dimensional manifolds we extend a result
of Grove [8], and then in the infinite-dimensional case we obtain some
approximate solutions to the problem of the minimal geodesics between two
closed subsets. This gives a motivation to treat a general problem of
mathematical programming on a complete Riemannian manifold. In Section
3, using the concept of generalized gradient (see [1], [2] and [10]), we give
an estimation of the distance between two closed subsets of a complete
Riemannian manifold. In Section 4 we state a fixed point theorem under the
hypothesis of a contraction along a minimal geodesic (this is a generalization
of a theorem of Clarke [3]).

2. Minimal geodesics and mathematical programming. Let M be a
(possibly infinite-dimensional) Riemannian manifold which we further sup-
pose to be complete and connected. Then each tangent space TM , is endowed
with an inner product (-, -), depending smoothly on the point p and let ||-||,
be the norm on TM, induced by (-, -),. Denote by d the Riemannian distance
on M.

In the setting of Riemannian manifolds we need to consider the notions
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of generalized gradient and normal cone. Recall that these notions are due to
Clarke who introduced them in the case of Banach spaces (see [1] and [2]).
Our approach to Riemannian manifolds is based on the use of the exponen-
tial map exp,: TM,— M.

DeriniTION 1. Let f: M — R be a locally Lipschitz function on M and
let pe M. The generalized gradient of f at p, denoted by (f (p), is defined to be
the generalized gradient (f oexp,)(0,) (in the sense of Clarke) of the locally
Lipschitz function foexp, on the Hilbert space TM, at O, T™M ,.

DEeriniTION 2. Let S be a closed subset of M and let pe S. We define the
normal cone Ng(p) to S at p as the normal cone in the sense of Clarke
Nep, 19(0y) to the closed subset exp, '(S) of the Hilbert space TM, at
0,e ™,

Remark 1. These notions as well as other concepts and results from
optimization theory were generalized in [10] to Banach manifolds.

Now, let S, and S, be two disjoint and closed subsets of M. In the
following we shall be concerned with the problem of the existence of minimal
geodesics between S, and S,. If M is finite dimensional and §; (i = 0, 1) are
submanifolds of M, then it is well known that there exists a minimal geodesic
between S, and S, which in addition is normal both to S, and S, (see [§],
Theorem 2.6). First of all we shall briefly establish that we can drop the
hypothesis that S; (i =0, 1) are submanifolds.

THEOREM 1. Let M be a finite-dimensional connected complete Riemannian
manifold and let S; (i =0, 1) be two disjoint and closed subsets of M provided
at least one of them is compact. Then there exists a curve c¢: [0, 1] — M from
So to S; such that

(1) ¢ is a geodesic of minimal length between S, and S,, i.e.

L(c) =d(So, S;) = inf d(xq, Xy);
X;€S;

(i) ¢'(0)e N, (c(0) and c'(1)e — N (c(1)).

Proof. Assume, e.g., that S, is compact. Putting a = d(S,, S;), we see
that

So =4xeSp: d(x,S))<a+1)}
is a nonempty compact subset of M and
d(S;), Sl) = d(SO! Sl) =d.

Hence there exist points peS, and geS, such that d(p. ¢) = a. The Hopf
Rinow Theorem assures the existence of a minimal geodesic ¢ joining p and
q. Thus L(c) =d(p, q) = a4, which establishes (i).

Concerning (i) we shall prove only that ¢'(1)e — Ny (c(1)), the same
argument yielding the other relation. Let d, be the distance function d,(x)
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= d(p, x). In view of the above argument and with the notation of (i) it is
clear that the point O, TM, minimizes the function d, oexp, over exp, LS.
Then using Lemma 2 from [2] and applying the calculus with generalized
gradients (see [1] and [2]), we obtain

O,cgrad(d,oexp,)(0,) + Nequ- Is)) (0,

le.,
grad (d,)(g)e — N, ().

But ¢'(1) = agrad(d,)(g). This assertion can be easily checked by using, e.g.,
an isometric embedding into some Euclidean space (which exists by the Nash
Embedding Theorem [11]). Then c'(1) belongs to — N, (g), so the proof is
complete.

For infinite-dimensional manifolds it is well known that even if S, and
S, reduce to points, the minimal geodesics may not exist (see [6] for a
counter-example and [7] for the infinite-dimensional version of the Hopf-
Rinow Theorem). Hence in the infinite-dimensional case the question is in
fact to approximate the minimal geodesics. The construction  of “almost”
minimal geodesics joining two given points was performed by Ekeland (see
[5], Theorem 6.3). So it is natural to look for a result of this type when the
points are replaced by closed subsets.

In the following, M denotes an infinite-dimensional complete and con-
nected Riemannian manifold. Assume in addition that M is separable and is
modelled by a separable Hilbert space. Consider the Sobolev Riemannian
manifold L{([0, 1]; M) and recall that the tangent space T (L ([0, 1]; M)),
at ce L3([0, 1]; M) is the set of all L? vector fields of M along c (see, e.g.,
[5] and [8])).

Let us consider the energy function F: LZ([0, 1]; M) — R given by

1

F(o) =1 [llc' (0l dt.

0
For the use of the energy integral in the theory of geodesics we refer to

[5], [8], [12], and [13].

The problem of minimal geodesics between two fixed nonempty disjoint
and closed subsets S, and S, of M is equivalent to the following optimiza-
tion problem:

(P) inf {F (c): c(0)€ Sy, c(1)eS,}.

We shall proceed by reducing the problem (P) to a mathematical
programming problem on M.

By [4], there exist positive smooth functions go: M — R and g,: M — R
corresponding to S, and S, such, that

(]) S,=C],—l(0), l=0,l
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Write G; =g;0ev; (i=0,1), where ev;: [3([0,1];M)—- M (i=0,1)
represent the evaluation mappings ev,(c) = c(0) and ev, (c) = c(1), respective-
ly. From (1) it follows that (P) is equivalent to the following problem:

(P) inf{F(c): Gi(c)=0,i=0, 1}.
We add the following natural hypothesis of regularity:
(2) both functions g, and g, have 0 as a regular value.

Remark 2. The assumption (2) implies that S, and S, are smooth
submanifolds of M.

The following result describes some approximate smooth solutions of
the problem (P’) (or (P)) which, in view of their properties, may be called
“almost™ minimal geodesics between S, and S,.

THEOREM 2. Let two nonempty disjoint and closed submanifolds S, and S,
of M be given such that (1) and (2) hold. Then for each ¢ > 0 there exists a
path c,e C*([0, 1]; M) satisfying the following conditions:
(1) ¢, (0)€So, c.(1)eS,, and
F(c) <inf{F(c): ce ([0, 1]; M), c(0)e S, c(1)eS,}+¢;

(11) there exist real numbers A and u such that

1
I”(Vc,('), €. (), 4t — AD(go),(0) ©EVo — D (91)c, 1) 0EV1"* SE,
0

where V. is the covariant derivative, ||*||* is the dual norm on T(L4 ([0, 1]; M)); ,
and Ev;: T(L4 ([0, 1]; M))c, — TM, ;) represents the evaluation mappings
Ev;()=¢(@) (i=0, 1).

CoroLLARY 1. If we set
V={¢eT(LL([0, 1]; M)).: ¢(0)e T(So)y 0, and E(Ve T(Sy)e)}s
then

1 1
B [[(7.. (€O), cLO)edt]” <& [N+ 7., E@N2)dt  for all Ec V.
0

0

Moreover, if c,eV,
1

4 llles (D12 1) — ez (012 0| < 2 [(llcz (N2 + 11 Ve, 2 (O 0) dt
0

Proof of Corollary 1. By (1) and (2) we have
T(SO)ce(OD =(D (go)ct(m)- '(0) and T(Sl)ce(l) = (D(gl)cs(l))_ (0.
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Relation (3) is now obtained from (i) of Theorem 2 and the defini-
tion of V.

Putting ¢ = ¢, in (3) and using

d ’ !
E”c’ (t)”czc(n = 2(Vce Ce (I), cc (r))cc(n’

we obtain (4).
Remark 3. Under Grove’s notation [8] we have

V= T(Aso xSy (M))cc.

We shall deduce Theorem 2 from another result (Theorem 3) by
discussing a general minimization problem on a Riemannian manifold sub-
ject to equality and inequality constraints.

On a complete (possibly infinite-dimensional) Riemannian manifold M
consider the following problem with constraints:

(5 inf {F(p): G;(p) =0, 1 <i<h;G;(p) =0, h+1<i <k},

where F: M — R is a Fréchet differentiable function and G;: M — R
(1 <i < k) are smooth functions on M.

This problem was studied by Ekeland in the case of Banach spaces [5].
Our next theorem is a version of Ekeland’s Theorem for complete Rieman-
nian manifolds. The main point in the proof is the construction of an
appropriate geodesic.

Let

C={peM; G(p)=0 (1<i<h)and G;(p) =0 (h+1<i<Kk)}.
For each peC put
I(p)={ie{l, ..., k}: Gi(p) =0}

and let i(p) be the number of elements of I(p).

THEOREM 3. Assume that F: M — R is bounded from below and that for
all pe C the following condition is satisfied:

(6) {D(G),: iel(p)} are linearly independent in TM}.
Then for each ¢ > 0 there exists p,e C with the properties
(1)) F(p) <infF+g;
(fi) there exi‘;r constants A; (1 <i < k) such that
420 (h+1<i<k), A4Gir)=0(1<i<k)

and

k
”D (F)p, - -Z‘ A D(Gl')pe”:e <e.
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Proof. By the variational principle of Ekeland applied to the complete
metric space C, there exists a point p, of C such that (i) is satisfied and

(N F(q) = F(p,)—¢d(p;, q) for all geC.
Let ve TM, be such that
D(G), (=0 (1<i<h
and
D(G), (v =0 (ielh+1, ..., k} nI(p,)).
Set
I(p,, v) = {ieil, ..., k}: G;(p) =0 and D(G)), (v) = 0}

and let i(p,, v) be the number of elements of I(p,, v).
Define the mapping G: M — R'%” by

G (x) = (G; ()icsip, -

Since, by (6), G is transversal to 0! < R‘”"”, G~'(0) is a closed
submanifold of M and

ve T(G™'(0),, = (D(G),,) " (0).

We endow G~ !(0) with the Riemannian structure induced by M. Let
¢: [0, x)— G~ '(0) be the unique geodesic of G~ '(0) such that

(8) cO=p, and ¢ (0)=vo.

According to a standard property of the exponential mapping there is
some !, > 0 such that

9) d(c(n), p) = tllvll,, for all re[0, to].

Now make the essential observation that we may choose t, > 0 with the
additional property:

(10) c()eC for te€[0, 14].
Then (7), combined with (8)«10), yields
d
(11) ZFoc(i)| =0 = D(Fy, () > —lloly.

Now (ii) is a direct consequence of Lemma 3.3 from [5] applied on the
Hilbert space TM,, to linear forms D(F), and D(G), (1 <i<i(p,)). This
completes the proof.

Proof of Theorem 2. Using the density of C*-paths among L}-paths
(see, e.g., [5], Lemma 6.1), it is sufficient to obtain the conclusions of
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Theorem 2 with ¢,e L3([0, 1]: M). We can derive this fact by replacing in
Theorem 3 the manifold M by the Sobolev manifold L3 ([0, 1]: M), and the
function F by the energy integral. We claim that in this case the regularity
condition (6) holds. This claim is easily verified by (2) and the fact that the
mapping ¢ — (¢(0), ¢(1)) from L5 ([0, 1]; M) to M xM is a submersion (see
[&8D.

3. An estimation of the distance. A basic problem related closely to the
existence of minimal geodesics joining two closed subsets S, and S, of M
which was discussed in Section 2 is to estimate the distance d(S,, S;) from S,
to §,. To this aim we proceed by adapting a result of loffe [9] from Banach
spaces to Riemannian manifolds. In our approach we essentially use the
notions of generalized gradient and normal cone on M introduced in
Definitions 1 and 2 of Section 2.

THEOREM 4. Assume that M is a complete Riemannian manifold and f: M
— R is a locally Lipschitz function on M. Let Sq = f~'(0) and let S, be a
nonempty closed subset of M such that So NS, = @. Then for each pe S, and
a >0 there exists g€ 8, such that

d(qa p) < ad(SO’ Sl)
and there exist we | f(q) and O¢ Ns, (q) satisfying
(12) d(So, $y) < |f(pl/allw+0]l7.

Proof. The argument is inspired from the proof of Theorem 16 of [6].
In fact, applying the variational principle of Ekeland to the function |f]|
restricted to S, we get a point ge S, with the properties d(q, p) < ad(S,, S))
and

IS (= 1f (@ =(1f (pl/ad(So, Sy))d(x, ¢)

for all xeS§,.
In particular, take x = exp,(v) with veexp, '(S;) and

d(exp, (v), q) = lvll,

(this condition holds if [|¢]|, is sufficiently small). Then we obtain

(13) | f (expg (0))| +(1f (P/ad (So, Sy))d (expgy (v), 9) =1 f (q)].

Thus the function of ve TM, on the left-hand side of inequality (13)
attains its minimum on exp, 1(S,) at 0,e iM,. Now, in view of Definitions 1
and 2 the theorem follows by applying the Lagrange multiplier rule (see [2])
on the Hilbert space T™M,.

Remark 4. The previous result is not of local type since for a given
point peS, it is not possible in general to find a chart at p whose domain
intersects S, .
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Remark 5. If p is chosen to be an interior point of S,, then for a >0
small enough ¢ is also an interior point of S, and hence N5 (¢) = 10}. Then
the estimation (12) takes the form

(14) d(So, S1) < 1S (pl/allwlly,

where peS, satisfies d(q, p) < ad(S,, S,) and wed|f(q).

Remark 6. According to [4], every closed subset S, of M (in the case
where M is separable) is the set of zeros of a smooth function on M. Hence
(12) (or (14)) is in fact an estimation of the distance between two arbitrary
closed subsets of a Riemannian manifold.

Theorem 4 yields, by an argument following the pattern of [9] (or [6],
Corollary 17), a more precise estimation of d(S,, S,).

COROLLARY 2. Let f: M — R be a locally Lipschitz function and let S, be
a nonempty closed subset of M. Let S, = f~'(0) and suppose So NS, = D.
Assume there exist points x;€S; (i =0, 1) and constants ¢ > 0 and C > 0 such
that

(1) d(xo, x1) < d(So, S1)+¢;

(i) if wed|f(x)| and 6e Ng, (x), then ||w+06|X = C for all xeS, with
d(xo, x) < 2(d(So, Sy)+¢).

Then d(So, Sy) < |f (x,)I/C.

4. A fixed point theorem. We end this paper with a version of the
Clarke’s fixed point theorem [3] for the case of complete Riemannian
manifolds. The novelty of our approach is to replace in the fixed point
theorem of Clarke the directional contraction (see also [6]) by a contraction
along a minimal geodesic.

THEOREM 5. Let M be a complete Riemannian manifold with metric d and
let S be a closed subset of M. Suppose f: S — S is a continuous mapping
satisfying the following assumptions:

(1) for every peS there exists a minimal geodesic c: [0, 1] — M beginning
at p and ending at f(p) and completely contained in S;

(1) there exists oc€[0, 1) such that for every peS there is t,e(0, 1]
satisfying

d(f (), f(p) <adlc(t,), p).

Then there exists a point qeS such that f(q) = q.

Proof. Assume f(p) # p for every peS. Choose ¢ > 0 such that g+¢
< 1. Define a continuous function F: S— R by F(p) =d(f(p), p). By the
variational principle of Ekeland, for ¢ > 0 there is some ge S such that

F(q) < F(p)+ed(p, q) for all peS.
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Taking p = c(1,), where c is the minimal geodesic from (i) corresponding
to the point g, we get

d(f(q), q) < d(f(c(t)), c(ty))+ed(c(ty), q).
Then, by (ii), we obtain

(15) d(f(q), 9)—d(f (@), c(tp) < (a+¢)d(c(t,), g).

Since c¢(t) is a minimal geodesic, we have

1

d(f(q), q) = (llc’ (e dt .

0
Therefore

d(f(q), a)—d(f(a), c(t) = d(q, c(1))),
and so from (15) we obtain
(1-o—¢)d(q, c(1,) <O.
Hence c(t;) = g, which contradicts the minimality of the geodesic c. This

proves the theorem.

Remark 7. The referee observed that a more general version of
Theorem 5 is true in any complete metric space.

THEOREM 5. Let S be a complete metric space and let f: S— S be a
continuous mapping satisfying the following condition: there is c€[0, 1) such
that if peS with p #f(p), then there exists q€S, q # p, such that

dp, 9)+d(q, f(p))=d(p.f(p)) and d(f(p).f(@)<ad(p,q).

Then the mapping f has a fixed point.

The proof of Theorem 5’ goes the same lines as the proof of Theorem 5
and therefore we omit it.

Acknowledgement. The author is very indebted to the referee for sim-
plifying the proof of assertion (i) from Theorem 1 and for pointing out the
generalization of Theorem 5 mentioned in Remark 7.
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