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0. Introduction. An algebra (A4, +, ) of type (2, 2) is said to be a
bisemilattice (see [16]) if it satisfies the following identities:
1) x+x=x, x'x=x;
(i) x+y=y+x, x'y=y-x;
(iil) (x+y)+z=x+(+2), (x'y):z=x(y 2)
(in the sequel we shall write xy instead of x-y).

The class of all algebras (4, +, -) of type (2, 2) satisfying (i) and (ii) is
denoted by V(+, ‘) and the class of all bisemilattices is denoted by B(+, *).
By p, = p.(20) we denote the number of all essentially n-ary polynomials
over .

In his survey of equational logic, Taylor ([19], p. 41) poses a general
problem asking whether the numbers p,(?) characterize (to some extent and
perhaps in special circumstances) the algebra 2 Our main result can be
treated as a contribution to this problem:

THEOREM. Let (A, +, ) be u bisemilattice. Then (A, +, ) is a nondis-
tributive modular lattice if and only if (A, +,-) has precisely 19 essentially
ternary polynomials.

Recall that a lattice (L, +, -) is modular if x(xy+z) = xy+ xz holds in
(L. +.-) for all x, y, zeL (see [12]).

An algebra A = (A, F) of type t is called proper (see [3]) if all funda-
mental polynomials of A are different and every nonnullary f from F
depends on all its variables.

Let f =f(xy, ..., ..,) be a function on a set 4. We say that f admits a
permutation g €S, (where S, denotes the symmetric group of n letters) of its
variables if f = f°, where

fa(xl: AR xn) =f(xal9 sy xcn)

for all x,, ..., x,€ A. By G(f) we denote the subgroup of S, of all admissible
permutations of f (see [14]). A function f =f(x,, ..., x,) is symmetric if f
=f° for all €S, and is idempotent if f(x, ..., x) = x for all xe A. Recall
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that an algebra (A4, F) is idempotent (symmetric) if every feF is idempotent
(symmetric).

For undefined concepts used here we refer to [11].

Before proving the quoted theorem we present some recent results
concerning the number of polynomials of algebras from the varieties B(+, *)
and V(+, ).

1. {p,}-sequences for algebras from V(+, -).
TueoreM 1.1 ([4)). If (A, +, ) is a proper bisemilattice, then

pa(A, +.,)=2+n" for all n>3.

THEOREM 1.2 ([3]). Let (A, +, ) be a bisemilattice with card A = 2. Then
(A, +, ) is a lattice if and only if

pz(A, +, ') = 2.
THeoREM 1.3 ([3]). There exists no bisemilattice (A, +,°) for which
pz(A. +.')=3. '
Note that bisemilattices with four and five essentially binary polyno-
mials are considered in [8] and [9].

THEOREM 1.4 ([7]). Let (A, +, *) be a proper algebra from V (4, ). Then
(A, +, °) is a distributive lattice if and only if

ps(A, +,7)=09.

Denote by V_(+, °) the subvariety of the variety V(+, ‘) of all algebras
(A, +, ) satisfying the identity

(x+y)y=x

(for details see [6]). Then we have

THeoreM 1.5 ([6)). If (A, +, )eVo(+, ) and (A, +, ) is proper, then
(A, +, ) contains infinitely many essentially n-ary polynomials for every n > 2.

We should mention here that if (4, +, )eV,(+, ), card4 > 2, and
(A, +, ) is improper, then (A4, +, ‘) is a Steiner quasigroup. Now, using
Theorem 3 of [13] and the fact that such a Steiner quasigroup contains
isomorphically as a subgroupoid the groupoid ({0, 1, 2}, 2x+2y), we infer
that for any improper algebra (A4, +, )eV.(+, :), where card 4 > 2, we
have

2"—(~1y"
3

Now we start with lemmas needed to prove the theorem quoted in
Section 0. Our proof splits into several cases.

Pa(4, +,°) = for all n.



NONDISTRIBUTIVE LATTICES 197

2. Ternary polynomials. In this section we deal with ternary polynomials
over a special kind of binary algebras.

LemMMA 2.1. Let + and - be essentially binary polynomials over an algebra
W. Assume that + is idempotent and commutative. Then the polynomial

q(xy, X2, X3, Xq) = X3 X3+ X3 X4
is essentially 4-ary over
Proof. Since + is idempotent, we get
xy =q(x, y, X, y).
Hence g is not constant. Assume now that g does not depend on x;
(i=1.,2,3,4), say, x,. Then using the identity
q(xy, X3, X3, Xq) = q(x3, X4, X, X3)

we infer that g also does not depend on x3. This proves that the polynomial
q(x, y, x, y) = xy does not depend on x, which contradicts the fact that xy is
essentially binary.

Lemma 2.2. Under the assumptions as above the polynomials
fO(xa Y, z)=(x+y)+z, fl(x’ Y, z)=(x+y)z,
fZ(x, Y, z)=z(x+y) and f3(x9 y, z)=xy+z

are essentially ternary.
Proof. It is clear that the polynomials f,. f,. f> admit the transposition
(x, y) of their variables. We also have

f(x’ X, y)e{x+y, Xy, yx} fOI fG {fo,fufz}-

Now using the commutativity and the idempotency of x+ y and the fact that
both x+y and xy are essentially binary we infer that f; (i=0, 1, 2) are
essentially ternary. To prove that f; of (1) is essentially ternary it suffices to
use Lemma 2.1 and the fact that

(1)

f3(x19 x2’ x3 x4) = q(xla xZ’ x39 x4)'
This completes the proof of the lemma.

LemMMma 23. Let (A, +, ', 0) be a proper idempotent algebra of type
(2, 2, 2) such that (A, +, ')e B(+, ) and (A, 0) is noncommutative. Then the
polynomials

(x+y)oz, :co(x+y),
(2 (xy)oz, zo(xy),
(x+yz, xy+z

admit only trivial permutations of their variables, i.e., the identity permutation
and the transposition (x, y).
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Proof. We give only the proof for the polynomial (x+ y)o:z since the
proof for the remaining polynomials of (2) runs similarly. It is clear that if
(x+y)oz admits a nontrivial permutation of its variables, then (x+y)o: is
a symmetric function. Hence

x+y = (x+y)0(x+y) = ((x+y)+y)ox = (x+y)0ox = (x+x)0y = x0y,

which is impossible in a proper algebra (A4, +, -, 0).

LEMMA 24. Under the assumptions of Lemma -2.3, the polynomials
(x+y)oz, zo(x+Yy), (x+y)z and xy+z are pairwise distinct (the same is true
for the polvnomials (xy)oz, zo(xy), (x+y)z and xy+:).

Proof. Observe that every identity of the two above polynomials gives
a contradiction. In fact, if, e.g, (x+y)z = z0o(x+y), then putting x =y we
get y- =-oy. This proves that (4, o) is commutative, a contradiction.

"Lemma 2.5. The assumption of Lemma 2.3 implies

(x+y)oz#zo(xy) and zo(x+y)#(xy)oz.

The proof is trivial by letting x = y.
LEMMA 2.6. Under the assumptions of Lemma 2.3 the identities

(x+y)oz=(xy)oz and zo(x+y) =zo(xy)

do not hold simultaneously in the algebra (A, +, -, O).
Proof. In fact, if the converse holds, then

x+y =(x+y)o(x+y) = (xy)o(x+y) = (xy) o(xy) = xy,
a contradiction.

LeMMa 2.7. There exists a proper idempotent algebra (A, +, -, 0) of type
(2, 2, 2) such that (A, +,*) is a bisemilattice, (A, 0) is a noncommutative
groupoid and (x+y)oz =(xy)oz holds in the algebra (A, +, -, O).

Proof. Take any nontrivial Plonka sum (4, +, -) of some proper lat-
tices (L;, +, ‘)i (for the definition of a Plonka sum of algebras see [18]).
Then, of course, the polynomial xoy = xy+y is essentially binary, idempo-
tent and noncommutative. We also have (4, +, ‘) =(4, +, -, 0), Since the
sets of polynomials in both algebras (4, +, ‘) and (A, +, -, 0) are equal. It
is clear that (4, +, -, 0) is a proper idempotent algebra of type (2, 2, 2) such
that (4, +, ) is a bisemilattice and (A4, o) is noncommutative. Further, we
have (x+y)oz =(xy)oz, since the identity (x+y)z+z =(xy)z+z holds in
every lattice, and therefore, as a regular identity, it also holds in the
considered algebra (for details see [17]-and [18]).

LemMMa 2.8. Let (A, +, ) be a proper bisemilattice and let (A, 0) be a
proper idempotent noncommutative groupoid. Then the inequalities

(3) (x+y)ozz?'é (xy)oz and zo(x+y)# zo(xy)
imply p3(A, +, -, 0) = 20.
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Proof. Consider a proper algebra (A4, +, -, o) of type (2, 2, 2). Ap-
plying Lemma 2.2 we infer that the polynomials (x+y)+:z, (x+))z, xy+z,
(xy)z, (x+y)oz, zo(x+y), (xy)oz and zo(xy) are essentially ternary. Now
permuting variables in these polynomials and applying Lemmas 2.3-2.6 and
the assumption (3) we get 20 different and essentially ternary polynomials
over the considered algebra (4, +, -, 0), namely: x+y+z, xyz, (x+y)z, (¥
+2)x, (z+x)y, xy+z, yz+x, zx+y, (x+y)oz, (y+z)ox, (z+x)0oy, zo(x+Y),
yo(z+x), xo(y+2), (xy)oz, (yz)ox, (zx) oy, zo(xy), yo(zx) and xo(yz). The
proof of the lemma is completed.

Lemma 29. Let (A, +, -, 0, *) be a proper idempotent algebra of type
(2, 2, 2, 2) such that (A, +, -)e B(+, *), both groupoids (A, 0) and (A, ») are
noncommutative and xoy¢{x*y, y*x}. Then

(4) P3 (Aa + s s 09 *) ? 20'

Proof. Consider the following ternary polynomials over the algebra
(A’ +’ ., o’ *):

x+y+z, xyz, (x+y)z, xy+z, (x+y)oz,
zo(x+y), (x+y)*xz and z=x(x+y).

Using Lemma 2.2 we infer that all these polynomials are essentially
ternary. Now permuting variables in these polynomials and applying Lem-
mas 2.3-2.5 and the assumption that the polynomials xoy, x*y, y*x are
distinct we get (4).

3. Bisemilattices with one absorption law. In this section we deal with the
variety of all bisemilattices (A4, +, -) satisfying the absorption law (x+y)y
= y. This variety will be denoted by B,.(+., ‘) or, shortly, by B,. (we shall
sometimes write B, instead of B,). The symbol B,, (+, *) (or, shortly, B,,)
stands for the subvariety of B(+, -) of all bisemilattices (4, +, *) satisfying
the identity xy+y =y (for details see [8]).

Let n be a positive integer. Denote by D(n) the set of all divisors of n.
The symbols min(x, y), max(x, y), (x, y) and [x, y], where x, ye N, have
their usual meanings. Now we have

LEMMA 3.1. There exists a bisemilattice from the variety B, being not a
lattice.

Proof. It is not difficult to check that the algebra (D(n), +, -), where x
+y =(x, y) and xy = max(x, y), belongs to the variety B, for every n. We
also see that this algebra does not satisfy the identity xy+y = y for some n.
For example, if n = 12, then (D(12), +, -) is not a lattice, since xy+y # y for
x =3 and y =2 (see also [5]).

Lemma 3.2. If (A, +,-)eB, and (A, +, ') is not a lattice, then the
polynomial xoy = xy+y is essentially binary and noncommutative (the dual
version of this statement is also true, i.e., if (A, +, -)eB,, and (A, +, *) is not
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a lattice, then the polynomial (x+y)y is essentially binary and noncommu-
tative).

Proof. First of all observe that (4, +, -) is proper. Indeed, if card A
=1, then (4, +, ‘) as a one-eclement algebra is a lattice, a contradiction.
Thus card A > 2, which implies that both polynomials x+y and xy are
essentially binary. If x+y = xy, then xy =(xy)y = (x+y)y =y, a contradic-
tion. So the algebra (4, +, ‘) is proper. Now applying Lemma 1 of [1] we
infer that xoy =xy+y # x. Since (4, +,°) is not a lattice, xoy # y.
Therefore, the polynomial xoy is essentially binary. If o is commutative,
then using Lemma 2 of [1] we obtain xoy = xy, and hence

xy =(xy)y =(x0p)y =(xy+y)y =y,
a contradiction. Analogously one can prove the dual version of the lemma.
Lemma 3.3. If (A, +,-)eB, and (A, +, ) is not a lattice, then

(x+y)oz #(xy)oz and zo(x+y)#:z0(x)),

where xoy = xy+y (the dual version of this lemma is also true).

Proof. If (x+y)oz =(xy)oz, then (x+y)z+z = xyz+2z. Putting y =z
in the last identity, we get

y=y+y=(x+y)y+y=xyy+y=xy+y.

This proves that (A, +, °) is a lattice, which is impossible. If again z o(x + y)
= z0(xy) holds, then

x+y =(x+y)o(x+y) = (x+y)o(xy) = (x+y)(xy)+xy
=((x+y)y)x+xy = xy+xy = xy,

which gives xy =(xy)y =(x+y)y =y, a contradiction.

LemMMma 34. If (A, +, *) is a bisemilattice being not a lattice satisfying one
absorption law, then py(A, +, °) = 20.

Proof. We give only the proof for a bisemilattice (4, +, -) from B,. (the
proof runs analogously for algebras from the variety B,.). It is routine to
prove that (A, +, -)eB,. is proper if and only if card 4 > 2. Now using
Lemma 3.2 we infer that (4, +, -, 0) is a proper idempotent algebra of type
(2, 2, 2) such that (A4, o) is noncommutative. Applying Lemmas 2.8 and 3.3
we get the assertion.

CoROLLARY 3.1. There is no bisemilattice with one absorption law being not
a lattice having 19 essentially ternary polynomials over it.

Proof. Using Lemma 3.1 we deduce that there exist bisemilattices
(A, +, ) with one absorption law which are not lattices. Applying Lemma 3.4
for such bisemilattices we get p, = 20. This completes the proof of the
corollary.
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4. Birkhofl’'s systems. Recall that a bisemilattice (4, +, ‘) is called a
Birkhoff system if (x+y)y = xy+y holds for x, ye A (see [1] and [16]).
Denote by B,(+, ) or, shortly, by B, the variety of all Birkhoff’s systems. It
is clear that every lattice is a Birkhoff system. However, the converse is not
true. Take, e.g., any nontrivial Plonka sum of some lattices. Then this algebra
satisfies (x+y)y = xy+ y since the Plonka sum of algebras preserves regular
identities (see [17] and [18]). It is also clear that the considered algebra is not
a lattice. Some examples of Birkhoff’s systems can be found in [8], [9] and
[16].

LemMma 4.1. If (A, +, ‘) €B,, then (A, +, °) satisfies the following ident-

ies: .

(xy+y)x = (xy+y)(yx+x) = xy,
(x+y)y+x=x+y+xy=x+y, (xy+y)(x+y)=xy+y.

The proof can be found in [8].

LemMma 4.2. If (A, +, ) is proper, (A, +, )eB, and (A, +, ) is not a
lattice, then xoy = (x+y)y = xy+y is essentially binary and noncommutative.

The lemma follows from Theorem 1 and Lemma 3 of [3].

Lemma 43. If (A, +, ) is proper and (A, +, -)eB,, then

z0(x+y) #z0(xy), where xoy =xy+y.
Proof. In fact, if zo(x+y) = zo(xy), then putting x = z, we get

xy = xy+xy = x(xy)+xy = xo(xy)
=x0(x+y)=x(x+y)+x+y=x+y+xy.

Hence xy = x+y+xy. Applying Lemma 4.1 we get x+y = xy, which is
impossible in a proper bisemilattice.

LemMma 44. If (A, +, ) is a proper Birkhoff system, then the polynomials
xz+yz and (x+2)(y+z) admit only trivial permutations of its variables (i.e.,
they admit only the transposition (x, y) and the identity permutation).

Proof. We give only the proof for the polynomial xz+ yz. It is clear that
if xz+yz admits a nontrivial permutation of its variables, then xz+ yz is
symmetric, and hence xz+ yz = xz+ xy. Putting y = z in this identity, we get

Xy =xy+xy=xy+yy=xy+y.

Thus the polynomial (x+ y)y is commutative. Applying Lemma 2 of [3] we
obtain x+y = xy, a contradiction.

LemMma 4.5. If (A, +, ") is a proper algebra from V(+, ), then
xz+yz #(x+2)(y+2).
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Proof. If xz+yz =(x+2z)(y+2z) holds, then putting x =y we get
yz=yz+yz =(y+2)(y+2) = y+z,

a contradiction.
Further we shall consider the following polynomials over Birkhoff’s
systems:

x+y+z, xyz, (x+)y)z, xy+z,
(5) (x+y)oz, zo(x+y), (xyoz, zo(xy),
xz+yz, (x+z2)(y+2), xy+yz+zx and (x+y)(y+2z)(z+x),

where xoy = xy+y. *

LemMMA 4.6. If (A, +, °) is a proper bisemilattice, then the polynomials
q(x,y,2)=xz+yz and q4(x,y,2) =(x+2)(y+2)

are essentially ternary (the same is true for any non-one-element algebra from
V(+, ).
Proof. The assertion follows from the identities

q(x, x, y)=xy, q4(x,x,y)=x+y,
q(x,y,2)=4q(y,x,z) and §(x,y,2) =q(,x, ).

Lemma 4.7. If (A, +, ) is a proper Birkhoff system being not a lattice,
then all the polynomials of (5) are essentially ternary and each of the
polynomials (x+y)z, xy+z, (x+y)oz, zo(x+y), (xy)oz, zo(xy), xz+ yz and
(x+2z)(y+z) admits only the identity permutation and the transposition (x, y) of
its variables.

Proof. Using Lemmas 2.2, 4.2, 4.6 and the fact that the two last
polynomials of (5) are symmetric we infer that all polynomials of (5) are
essentially ternary. Now applying Lemmas 2.3, 4.2 and 4.4 we deduce that all
the polynomials listed in the lemma do not admit any nontrivial permutation
of their variables. This completes the proof of the lemma.

Lemma 4.8. If (A, +, ) is a proper Birkhoff system, then
x+y+z#xy+yz+zx and xyz # xy+yz+zx.
Proof. If x+y+z = xy+yz+zx, then
X+y=x+y+y=xy+yx+x=xy+y.

Now an application of Lemma 3 of [3] gives x+ y = xy, which is impossible
in a proper bisemilattice. Analogously one proves the second inequality of
the lemma. :

Recall that a bisemilattice (4, +, *) (in general an algebra (A4, +, °) of
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type (2, 2)) is called distributive if (x+y)z = xz+yz and xy+z =(x+:2)(v+2)
hold in (A4, +, ) for all x, y, ze A.

LEmMMA 4.9. Let (A, +, ') be a nondistributive Birkhoff system being not a
lattice. Then py(A, +, ) = 21.

Proof. Since (4, +, -) is nondistributive, we have
(x+y)z#xz4+yz or xy+z#(x+2)(y+2).

Without loss of generality we may assume that the first inequality holds. In
virtue of Lemma 4.2 we infer that xoy = xy+y is essentially binary and
noncommutative. Consider now the following polynomials: (x+y)z, xy+z,
(x+v)oz, zo(x+y), zo(xy) and xz+y:-. By Lemma 4.7 we deduce that all
these polynomials are essentially ternary and that the admissible group of
each of them is isomorphic to S,. If xy+z = xy+yz, then x+y=xx+y
= xy+xy = xy, a contradiction. Now applying Lemmas 2.4, 4.2, 4.3 and the
assumption (x+ y)z # xz+yz we conclude that all mentioned ternary poly-
nomials are pairwise distinct. Permuting variables in these polynomials we
get 18 essentially ternary and pairwise distinct polynomials. Adding to these
18 polynomials the polynomials x+y+2z, xyz and xy+yz+2zx and applying
Lemmas 4.6 and 4.8 we get 21 essentially ternary polynomials over (4, +, ).
The proof of the lemma is completed.

Lemma 4.10. If (A, +, °) is a proper Birkhoff system being not a lattice
such that py(A, +,°) <21, then (A, +, ) is distributive.

Proof. We should add that there exist algebras satisfying the assump-
tion of this lemma (see the beginning of this section and the next lemma).
The lemma follows from Lemma 4.9.

LemMma 4.11. If (A, +, *) is a proper distributive bisemilattice being not a
lattice, then p3(A, +, ) =18.

Proof. First of all observe that such a bisemilattice is a Birkhoff system,
and it is also a distributive quasilattice considered by Plonka in [17]. For
such algebras the polynomial xoy = xy+y is a P-function (see [18]). Using
the identities of the P-function (see [18]) and the Marczewski formula of
the description of the set A™ () for a given algebra A (see [15]) we infer
that x+y+z, (x+y)z, (y+2)x, (z+Xx)y, xyz, xy+2z, yz+x, zx+y, xy+yz
+zx, (x+y)oz, (y+2)ox, (z+x)oy, zo(x+y), xo(y+z), yo(z+x), zo(xy),
xo(yz) and yo(xz) are the only essentially ternary polynomials over (A4,
+, ). In the proof we have also used Lemmas 4.7 and 4.8.

CoRrOLLARY 4.1. There is no Birkhoff system (A, +, :) being not a lattice
for which p5(A, +,°)=19.

Proof. Assume that such an algebra, say, (4o, +, ‘), exists. Since
p3(Ag, +,°) =19 <21, we infer that (4,, +, ) is distributive (see Lemma
4.10). Applying now Lemma 4.11 we get p3(4y, +, ) = 18, which is impos-
sible.
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5. Bisemilattices with (x+y)y = x+y. In this section we shall consider
the variety B..(+, -) or, shortly, B,.. (or B, of all bisemilattices satisfying the
identity (x+y)y = x+y. Using Lemma 2 of [3] we see that it is the same to
assume that the polynomial (x+ y)y is commutative, i.e., (x+y)y = (y+x) x.
This identity (together with Lemma 2 of [3]) justifies the symbol B..(+, -)
for the above variety. Analogously, by B, (+, -) we denote the subvariety of
all bisemilattices (4, +, -) satisfying the identity xy+y = xy.

LEMMA S5.1. There exist proper algebras in B...

Proof. It suffices to take an algebra (D(n), [x, y], max(x, y)) (see
Section 3) for n being not a prime power, i.e., n is not of the form p™, where p
is a prime number and m is a positive integer (for details see [5]).

LemmMma 5.2. If (A, +, °) is proper and (A, +, ‘)€ B.., then the polynomial
xOoy = xy+y is essentially binary and noncommutative (the dual version of the
lemma is also true).

Proof. Applying Lemma 1 of [3] we infer that xoy # x. If xoy =y,
then

xy = y(xy) = (xoy)(xy) = (y+xy)(xy) = y+xy =xy+y =y,
a contradiction since (4, +, ‘) is a proper algebra. If xoy is commutative,
then xy+y and (x+y)y are both commutative, which contradicts Lemma 3
of [3].
LemMma 5.3. If (A, +, ) is a proper algebra from B,., then

(x+y)oz #(xy)oz and zo(x+y)#z0o(xy),

where xOy = xXy+y.
Proof. Assume that (x+ y)oz =(xy)oz holds in (4, +, :). Then
x+y=(x+y)+y=(x+yy+y
=(x+yoy=(x)y+y=xy+y=x0y.
Thus xoy is commutative, which contradicts Lemma 5.2. If again zo(x+y)
= z0(xy) holds in the algebra, then
xy = xy+xy = x(xy)+xy = x o(xy)
=x0(x+y) =x(x+y)+(x+y) =x+y.

Hence x+y = xy, which is impossible.

Lemma 54. If (A, +, ) is a proper algebra from B.., then p;(A, +, )
= 20.

This follows from Lemmas 2.8, 5.2 and 5.3.
From Lemma 54 we get immediately

CoOROLLARY 5.1. There is no bisemilattice (A, +,) in B,.. for which
pa(A. +.°) =19 (the same is true for the variety B,.).
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6. Bisemilattices with at least five essentially binary polynomials. The
main aim of this section is to prove Corollary 6.1 which states that there is
no bisemilattice (4, +, ) for which p;(A4, +, ) =19 and p,(4, +,)=5.
Before proving this we need three lemmas.

LemMma 6.1. If (A, +, ) is a proper bisemilattice, then

(x+y)y # yx+x.
Proof. If (x+y)y = yx+x holds in (4, +, *), then
(X+)y =((x++y)y =v(x++(x+y) =(x+y)y+(x+y)
=x+x)+(x+y) = (xy)+(x+y).

Thus both polynomials (x+y)y and xy+y are commutative, which contra-
dicts Lemma 3 of [3].

Lemma 6.2. If (A, +,°) is a bisemilattice and p,(A, +,°) =5, then
p3(’49 +a ) ? 20-

Proof. Consider the following two binary polynomials:
xoy=(x+y)y and x=xy=xy+y.

If both polynomials xoy and x =y are essentially binary, noncommutative
and xoy # x =y, then using Lemmas 29 and 6.1 we infer that

pJ(A’ +’ .) =p3(‘49 +7 » O, *)2 20-

If xoy = x=*y, then (A, +, -) is a Birkhoff system. Now using Lemma 4.1 we
deduce that p,(A4, +, ) <4, a contradiction with the assumption (see also
[8]). Applying Lemma 1 of [3] we have (x+y)y # x and xy+y # x. If xoy
is not essentially binary, then xoy =y. If also x*xy =y, then (4, +, ) is a
lattice, and therefore p,(A4, +, ) <2, which contradicts the assumption
p2(A, +,°)=5. Thus further we have to consider the case where
(A, +,)eB,. and (A, +,°) is not a lattice or the dual case where
(A, +, ')eB,; and (A4, +, °) is not a lattice. Applying now Lemma 3.4 we get
p3(A, +, ) = 20. It remains to consider the case where (x+ y) y is essentially
binary and commutative (or the dual one). By Lemma 2 of [3] we infer that
(4, +, ‘)eB... Since p,(A, +,°) =5, we deduce that (A, +, ‘) is proper.
Applying now Lemma 54 we get p3(A4, +,:)=>20. If x*y=xy+y is
commutative, then we use the dual versions of Lemma 2 of [3] and of
Lemma 5.4. The proof of the lemma is completed.

LemMma 6.3. If (A, +, *) is a proper bisemilattice being not a lattice, then
pi(A, +,°) =18 or py(A4, +, ) = 20.

Proof. Since (A4, +, ) is not a lattice, we infer by Theorem 1 of [3]
that p,(A, +, ) > 2. Using Theorem 2 of [3] we obtain p,(4, +,-)=>4. If
p2(A, +, ) =5, then applying Lemma 6.2 we get p;(A, +, ) = 20. Take
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now into account the case p,(A4, +, -) = 4. Considering as in the proof of
Lemma 6.2 the polynomials xoy =(x+y)y and x*y = xy+y we infer that
umder the condition p,(A, +, ‘) =4 the algebra (A, +,-) is a Birkhoff
system being not a lattice. Thus (A4, +,) is in the variety B,(+, ). If
(A, +, ) is nondistributive, then applying Lemma 4.9 we get p;(4, +, )
=21 >20 If (A, +,-) is a proper distributive bisemilattice being not a
lattice, then we use Lemma 4.11 to get the requirement. This completes the
proof of the lemma.

From Lemma 6.3 we get

CoOROLLARY 6.1. There is no bisemilattice (A, +, ) with p,(A, +,:) =5
satisfying py(A, +, ) = 19.

We should mention here that there exist bisemilattices (4, +, ‘) for
which p,(A4, +, ) =2 5. Such bisemilattices are considered in [9].

7. Ternary polynomials in lattices. In this section we present some
lemmas on ternary polynomials in lattices. We also give some characteriza-
tions for distributive lattices and nondistributive modular lattices.

Lemma 7.1. If (L, +, *) is a lattice with card L > 2, then the polynomials

a=x+y+z, a=xyz,
b=(x+y)z, b=xy+z,
c=Xxz+yz, c=(x+2)(y+2),

6 .
© d=xy+yz+zx, d=((x+y)(y+2)(z+x),

e=(x+y)(xy+z), é=xy+(x+y)z,
f=(xy+2)x, f=(x+y)z+x

are essentially ternary. )

Proof. For a, a4, b and b the statement follows from Lemma 2.2. The
polynomials d and d are essentially ternary, since they are idempotent and
symmetric. Using Lemma 4.6 we infer that ¢ and ¢ are essentially ternary.
Now we prove that e is essentially ternary (the proof goes analogously for é).
Observe that e(x, y, z) =e(y, x,z) and e(y, y, z) =y. This proves that e
depends on x and y. If e does not depend on z, then e(x, y, z) = e(x, y, y),
whence x =y, a contradiction. Consider now the polynomial f(x, y, z) =
(xy+2) x. We have xz = (f(x, y, z))z, which proves that f depends on x. If f
does not depend on z, then (xy+2z) x = (xy+y) x. Hence xy = x, a contradic-
tion. If f does not depend on y, then f(x, y, z) =f(x, x, z) = x. This proves
that f does not depend on the variable z, a contradiction. Analogously one
can prove that f is not -essentially ternary.

Lemma 7.2. If (L, +, *) is a lattice with card L > 2, then the polynomials f
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and f of (6) neither admit any cycles nor any transpositions (x, y) and (x, z) of
their variables.

Proof. We give only the proof for the polynomial f (the proof for f runs
similarly). If f admits a cycle of its variables x, y, z, then

[ 9, =(f(x, 5, 2)x =(f(, 2, ) x = ((¥z+2) y)x = (yz+x) x) y = xy.

Hence f(x, y, z) = xy, which contradicts the previous lemma. The proof runs
similarly if f admits the transpositions (x, z). Let now f admit the transposi-
tion (x, y). Then

xz=(f(x,y,2)z=(f(, x, 2))z=(yx+2)y)z = yz.
Hence xy = x, a contradiction.

LemMma 7.3. Let (L, +, *) be a lattice. Then (L, +, *) is modular if and
only if (xy+z)x =(xz+ y)x holds in (L, +, ) (the dual version of the lemma is
also true).

Proof. Assume that (L, +,‘) is a modular lattice. Then (L, +. )
satisfies (xy+z)x = xy+ xz. Hence (xy+2z) x = (xz+ y) x since the polynomial
xy+ xz admits the transposition (y, z) of its variables. Assume now that (L,
+, ) is a lattice satisfying (xy+2z)x =(xz+y)x and assume to the contrary
that (L, +, *) is nonmodular. Using statement (i) of Theorem 2 (p. 70) of [12]
we infer that L contains isomorphically N5 = |0, a, b, ¢, 1! as a sublattice,
where b < a. Hence

a=1a=(b+c)a=(ab+c)a=(ac+b)a=(0+b)a=0b,

a contradiction. Analogously one can prove the dual version of the lemma.

Lemma 7.7. If (L, +, *) is a nonmodular lattice, then the polynomials
f(x,y,2)=(xy+2)x (or its dual f) does not admit any permutation of its
variables, i.e, G(f) = S,.

Proof. If (L, +, -) is a nonmodular lattice, then the lemma follows from
Lemmas 7.2 and 7.3. Assume now that G(f) = S, (analogously if G(f) = S,).
Then (L, +, ‘) is nonmodular since in the opposite case the polynomial
f(x,y,2) =(xy+2)x = xy+xz admits the transposition (y, z) of its variables.
This contradicts the assumption G(f) = S,.

Lemma 7.5. If (L, +,") is a nondistributive lattice, then the polynomials b,
b, ¢, ¢ of (6) are pairwise distinct.

The lemma follows from the nondistributivity of the lattice (L, +, -) and
the method of proving used in Lemma 24.

_Lemma 7.6. If (L, +, ) is a lattice with card L > 2, then the polynomials
b, b, ¢, ¢ of (6) admit only the transposition (x, y) and the identity permutation
of their variables.. .

Proof. Applying Lemma 2.3 we get the required assertion for b and b.
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It is clear that ¢ admits a nontrivial permutation of its variables; then c is
symmetric, and hence xz+ yz = xz+ xy. Putting y = z in this identity, we get

Xy =xy+xy=xyt+y=y,

a contradiction. The proof runs similarly for ¢.
Lemma 7.7. If (L, +, -) is a nonmodular lattice, then the polynomials

a=x+y+z, a=xyz,
b=(x+y)z, y+2)x, (z+x)y,
b= xy+z, yz+x, zx+y,
c=xz+yz, xy+:zy, zx+yx,
¢ =(x+2)(y+2). (x+y)(z+y), E+x)(y+X),
d=xy+yz+zx, d=(x+y)(y+2)(+x),
f=xy+2)x, yz+x)y, zx+y)z, (yx+2)y, (x2+y)x, (zy+x)z

are all essentially ternary and pairwise distinct.

Proof. Using Lemma 7.1 we infer that all the above polynomials are
essentially ternary. It is clear that G(a) = G(4) = G(d) = G(d) = S;. Applying
Lemmas 7.4 and 7.6 we obtain G(f) =S,, G(b) =G(b)=G(c) =G = S,.
Now using these facts, Lemma 7.5 and the nondistributivity of (L, +, ) (see
Theorem 3.1, p. 19, of [2]) we get our requirement. The proof of the lemma
is completed.

From Lemma 7.7 we get immediately

. CoroLLARY 7.1. There is no nonmodular lattice (L, +, ) for which
ps(L, +,°) =19. Moreover, if (L, +,) is a nonmodular lattice, then
ps(l.. +.) =22

8. Nondistributive modular lattices. In this section we give some more
information about ternary polynomials over modular (distributive) lattices.

Lemma 8.1. Let (L, +., -) be a lattice. Then the following are equivalent:

(i,) (L, +, °) is distributive;

(i) (L, +, *) satisfies (x+y)(xy+2) = xy+yz+2zx;

(i3) (L, +, *) satisfies xy+(x+y)z =(x+y)(y+2)(z+X).

Proof. The implications (i;) = (i,) and (i;) = (i;) are easy to verify. Now
we prove (i,) =>(i,) (analogously one can prove the implication (i3) =(i,)).
Putting xy for y in the identity

(x+y)(xy+2z)=xy+yz+zx
we get

(xy+2)x = (x+xy)(x(xy)+2) = xy+xyz +2x = xy+xz.
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Hence xy+ xz = x(xy+:z), which proves that the considered lattice is modu-
lar. Now we have

(x+y)z =(x+y)((xy+2)z)
= ((x+y)(xy+2))z = (xy+yz+2x)z = ((zx)+(xy+yz))2
=zX+(Xv+yv2)z =X+ v+ XY)z = x4+ Zv+Xys = XS+ )z
Thus (L, +, -) satisfies the distributivity.

LEMI![A 8.2. If (L, +, ) is a nondistributive modular lattice, then d # é
and e #d.

Proof. Lt e=d, ie.,
(x+y)(xy+2) =(x+y)(y+2)(z+x)
holds in (L, +, ). Using this identity we get
(xy+2)x =((x+y)(xy+2))x =((x+y)(y+2)(z+x)x =(y+2)x.
Since (L, +, ‘) is modular, we infer that
y+2)x =(xy+2)x = yx+2zx,

which proves that (L, +, ‘) is distributive, a contradiction. Analogously,
using the dual modular law (x+ y)z+ x = (x+ y)(x+2), we prove that e and
d are distinct.

Lemma 83. Let (L, +, ‘) be a modular lattice. Then the following are
equivalent:

(1) (L, +, ) is nondistributive;

(2) the polynomial e(x, y, z) = (x+y)(xy+2z) is nonsymmetric:

(3) the polynomial é(x, y, z) = xy+(x+Yy)z is nonsymmetric.

Proof. Let (L, +, ) be modular and nondistributive. Assume that the
polynomial e(x, y, z) is symmetric. Then

(x+y)(xy+2) =(x+2)(xz+y).
Using this identity we get
(x+y)z =(x+y)((xy+2)2) = (x+y)(xy+2))z = (x+2)(xz +y))z
=((x+2)2)(xz+y) = (zx+y)z.

Hence (x+y)z = (zx+y)z = xz+ yz, which proves that (L, +, -) is distribu-
tive, a contradiction. To prove that (j;) =(j,) assume to the contrary that
(L. +. ) is distributive. Then we have

e(x,y,2)=(x+y)(xy+2) =(x+y)(xy)+(x+y)z = xy+ yz+zx.

Thus e(x, y, z) is symmetric,c a contradiction. Analogously we prove
(1) <>(j3). The proof of the lemma is completed.
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Lemma 84. If (L, +, ) is a modular nondistributive lattice, then the
following polynomials of (6): a, a, b, b,c,é,d d and e = é are pairwise distinct.

Proof. The assertion follows from the nondistributivity of (L, +, ) (see
Theorem 3.1, p. 19, of [2]), Lemmas 8.1, 8.2 and some standard methods of
proving used earlier. For example, if

(x+y)(xy+2z)=xy+yz+zx,
then using the modular law (see [2], p. 19) we infer that

xy+yz+zx =xy+(x+y)z.
Hence d = e, which contradicts Lemma 8.2.

Lemma 8.5. If (L, +, ) is a modular nondistributive lattice, then the
ternary polynomials

a=x+y+z, a=xyz,

b=(x+y)z, (y+2)x, (z+x)y,

b=xy+z, yz+x, zx+y,

) ¢c=xz+yz, xy+zy, zx+yx,
¢=(x+2)(y+2), (x+n(+y), C+x)(y+x),

d=xy+yz+zx, d=(x+y(y+2)(z+x),

e=(x+y(xy+2z), y+2)(yz+x), (z+x)(zx+Y)

are essentially ternary and pairwise distinct.

Proof. The fact that the polynomials of (7) are essentially ternary
follows from Lemma 7.1. Further the assertion follows from Lemmas 7.5, 7.6
and 8.2-84.

Lemma 8.6. If (L, +, ) is a modular nondistributive lattice, then the
polynomials of (7) are the only essentially ternary polynomials over (L, +, *).

Proof. To prove this lemma we use a description of the set A™ ().
Namely,

AD(W = | A",
k=0
where
A=(A4,F), APW={eP,..., "}
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and

(n) 9[) A}:’)(%U:f(fh.--,f;,): fl?“ﬂfmeA;tn)(sz[) andfeF}

k=0,1, ...). In our case F = {+,-} (for details see [15]). We should
mention that we also use the identities of the variety of modular lattices,
among others the identities

(xy+z)x =xy+xz, ((x+y)z+x=(x+y)(x+2)
and
(x+y)(xy+2z)=xy+(x+y)z

(see [2] and [12]).

LemMma 8.7. Let (L, +, ') be a nondistributive lattice. Then (L, +, ) is
modular if and only if ps(L, +, ) = 19.

Proof. If (L, +, -) is modular, then the assertion follows from Lemma
8.6. Assume now that (L, +, ) is a nondistributive lattice and p;(L, +, °)
=19 (in this case it suffices to assume that (L, +,) is a lattice and
ps(L, +,°) =19, see [7]). If (L, +, ) is nonmodular, then applying Corol-
lary 7.1 we get p3(L, +, ) = 22, a contradiction.

Lemma 88. Let (L, +, ) be a modular lattice. Then (L, +, -) is$nondis-
tributive if and only if ps(L, +, ) = 19.

Proof. If (L, +, ‘) is nondistributive, then applying Lemmas 8.5 and 8.6
we get p3(L, +, ) =19. If ps(L, +,°) =19, then, of course, (L, +,) is a
nondistributive lattice, since in the opposite case we have p; (L, + ) =9 (f
card L > 2), which is impossible.

9. Proof of the Theorem. In this section we prove the theorem quoted in
Section 0. Let (4, +, ) be a bisemilattice. If (4, +, -) is a modular nondis-
tributive lattice, then the assertion follows from Lemma 8.7 or 8.8. Assume
now that p;(A4, +, ) = 19. This implies that (4, +, -) is a proper bisemilat-
tice. Hence p,(A4, +, ) = 2. Using Corollary 6.1 we infer that p,(4, +, )
< 4. Applying Theorem 2 of [3] we conclude that p,(A4, +,)=2 or
p,(A, +,)=4. If p,(A, +,-) =2, then by Theorem 1 of [3] we deduce
that (4, +, ‘) is a lattice. If now (A4, +, -) is a nonmodular lattice, then
applying Corollary 7.1 we get p;(A4, +,°) =22, a contradiction. Thus
(4, +, *) is a modular lattice. Since p3(4, +, ) = 19, we infer by Lemma 8.8
‘that (L, +, -) is nondistributive. Let us turn to the remaining case where
p2(4, +,°)=4. All such bisemilattices are described in [8] and every
bisemilattice (4, +, -) with p,(4, +, ) =4 belongs to one of the following
varieties: B,.(+, *), B,+ (+, *), By(+, *), B..(+, *) and B, (+, -). Now apply-
ing Corollaries 3.1, 4.1 and 5.1 we get a contradiction with the assumption
p3(A, +, ) =19. This completes the proof of the theorem.

2 - Colldquium Mathematicum LV.2
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