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0. Introduction. The present paper concerns (-4 1)-dimensional
Riemannian manifolds (3, g) with metric g of index one. A C*-function f
on M is called a time function if its gradient df satisfies the relation g (df, df)
< 0. In this case the quotient space M [f of M by the relation, whose
equivalence classes are maximal integral curves of df, is an n-dimensional
C*-manifold, in general non-Hausdorff.

The case where M [f is a Hausdorff manifold is considered in Section 2.
It is shown there, in particular, that M is diffeomorphic to the product
R x M |f (Theorem 1). Moreover, if a compact n-dimensional submanifold M
of M is spacelike, that is ¢(¥, Y) > 0 whenever 0 # Y e TM, then M
is diffeomorphic to M /f and meets each maximal integral curve of df
at exactly one point. In particular, if M admits a time function f such
that M [f is a Hausdorff space, then any two compact spacelike submani-
folds of M are diffeomorphic (Corollary 1). Section 2 contains also a suf-
ficient condition for a 1-form w on M which is closed and timelike (dw = 0,
g(w, w) < 0) to be the gradient of a time function.

The results of Section 3 show that the above-mentioned statements
about time functions and compact spacelike submanifolds fail in the case
where M /f is non-Hausdorff. Namely, each n-dimensional compact mani-
fold can be embedded in some Riemannian manifold as a spacelike sub-
manifold which meets an' integral curve of the gradient of some time
function at two points (Theorem 2). Theorem 3 states that for each n > 1
there exists an (n 4 1)-dimensional Riemannian manifold (M, g) with
metric ¢ of index one which admits a time function and contains a diffe-
omorphic image of each compact n-dimensional manifold as a spacelike
submanifold. Therefore, the assumption that M/f is a Hausdorff space
cannot be omitted in Corollary 1.

1. Some properties of time functions. By a manifold we shall mean
a connected C*-manifold which need not be a Hausdorff space. In the
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sequel, (M, g) will denote an (n+1)-dimensional Hausdorff manifold M
with Riemannian metric g of index one. A vector ¥ € T M is called spacelike
(respectively, timelike) if g(Y, ¥Y)> 0 (respectively, g¢g(Y, Y)<0).
An n-dimensional submanifold M of M is called spacelike if so is each
non-zero vector tangent to M.

By a time function on M we shall mean a C*-function whose gradient
i a timelike vector field. In the sequel, f will denote a time function on M.
By X we shall denote a complete timelike vector field on 3 such that X,
is parallel to df, at each p € M.Such a field exists for each time function f.
In fact, let & be any complete positive definite Riemannian metric on M
which exists in view of Whitney’s embedding theorem (see [3], p. 113).
Then the field X = h(df, df)~'*-df is h-unit and therefore complete. The
integral curves of X are the same as those of df, up to a change of pa-
rameter. The flow of X will be denoted by ¢, ? € R.

It is easy to verify the following

PRrOPOSITION 1. Let f be a time function on M. Then

(i) M is mot compact.

(ii) If a curve z: (a, b) — M is timelike, that is g(%,,%,) < O fort € (a, b),
then f is strictly monotone along x. In particular, M admits no closed timelike
curve.

In fact, (i) is obvious and (ii) follows from the relation

d
— 1 @) = gldf, @) # 0.

Given a time function f on M, by M /f we shall denote the topological
guotient space of M by the relation whose equivalence classes are maximal
integral curves of df. The natural projection will be denoted by = = =,:

PROPOSITION 2. The quotient M|f i8 an m-dimensional topological
manifold (not necessarily a Hausdorff space). Moreover, it admils a unique
differentiable structure of class C® such that for amy m-dimensional sub-
manifold M of M which is transverse to df (in particular, for any spacelike
submanifold) the mapping n: M — M|[f is locally diffeomorphic. The pro-
jection m: M — M [f is of class C* with respect to this structure.

Proof. Let p € M and let M be any n-dimensional submanifold of M,
containing p and transverse to df. Since f is monotone decreasing along

each integral curve of df, it is easy to see that for some neighbourhood U
of p in M the projection n: U — M [f is one-one. Let V be any open subset

of U. Since the mapping
RxVa(t,g)>pgecM
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is locally diffeomorphie, its image
UeV = =" a(V))
teR

is open in M and = (V) is open in M |f. Hence n: U — M|f is a homeo-
morphic embedding and = (U) is open. Therefore, the pair

(#(T), y) = (=(0), (=0)7)
is a local chart in M [f.

Now it is sufficient to prove that the atlas on M/f formed by all
charts of this kind is of class C*. Let (=(U,), v;), 4 =1, 2, be two such
charts and let p € y,(z(U,)N7(U,)). Thus pe U1 and ¢,p € U, for some
real number ¢. Choose a coordinate system z°, ..., 2" at ¢,p such that the
equation #° = 0 defines a neighbourhood of <p,p in U,. The function z,
given by 2(s, q¢) = 2°(¢.q), is defined in a neighbourhood of (¢, p) in R x U,
and satisfies the conditions

20,0) =0 and o (1,p) = 0 (pdles = 9(ds", X) 0,
8 ds
since da° is orthogonal and X is transverse to U,. Using the implicit fune-
tion theorem we may find a C*-function G on a neighbourhood of p in U,
such that 2(G(g), q) = 0,i.e.,pgq q € U,. Therefore, the transition mapping
is given by p,0yr'(q) = Pas 80 it is of class 0.

Thus M [f is provided with a C* differentiable structure. The assertion
that 7, is of class O follows from the fact that df can be written locally
in the form d/dz° for some coordinate system z°, ..., z™.

The particular case,

(M, g) = (R*— {0}, —(dz)*+(dy)’), f=w=,
shows that the quotient cannot be a Hausdorff space. In fact, here it
is diffeomorphic to the real line with one point doubled.
2. The Hausdorff case. '

THEOREM 1. Let M|f be a Hausdorff space. Then there exists a diffe-
omorphism @ of the product Rx M /f onto M such that, for any mazimal
integral curve L of df, D(R x {L}) =

Proof. Define ¢: M—> RxM| fbyga(p)— (f(p), 7(p)). Using coordinate
systems of the form f, ', ..., 2" on M it is easy to verify that ¢ is locally
diffeomorphic. Moreover, ¢ is one-one, since f decreases along each inte-
gral curve of df. Thus ¢ maps M diffeomorphically onto the open sub-
manifold ¢(M) of Rx M|f.

We assert that there exists a C®-function F: M|f - R such that
for each L e M|f the real number F(L) lies in the interval f(L)
= {f(p) | p € L}. It i8 clear that such a function exists in a neighbourhood

of any given point of M [f. Choose a locally finite open covering {U; | I}
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of M|f with a family {F;|i e I} of C™-functions F;: U, > R such that
F,(L) e f(L), and with a partition of unity {@;|¢ e I} such that 0 < G; <1
and supp G; = U, for any ¢ € I. From the convexity of intervals it follows
that the function

F = )'&F,

tel
has the properties stated above.

Now define &: Rx M |f >~ M by
®(t, L) = g9 (F (L), L)).

It is clear that the assignment M |f> L+ ¢ '(F(L), L) € M defines
a diffeomorphism of M /f onto a submanifold of M which is transverse
to df and meets each maximal integral curve of df exactly once. There-
fore, @ is a diffeomorphism with the desired properties, which completes
the proof.

To conclude some facts from Theorem 1 we shall need the following

LEMMA 1. Suppose that N i8 an n-dimensional Hausdorff manifold
and M is an n-dimensional compact submanifold of R X N, which 18 trans-
verse to each curve of the form R x {p}, p € N. Then M intersects any such
curve at exactly one point, in particular M is diffeomorphic to N.

Proof. Since M is compact, we may choose ¢ > 0 such that the
conditions (s, p) € M and (¢, p) € M imply that either 8 =t or |s—1¢| > &.
Let A be the set of all (s, p) € M such that there exists t > 8 with (¢, p) € M.
By our assumption, the natural projection py: R x N — N restricted to M
i8 locally diffeomorphic, so p),: M — N is a covering in view of Corollary 4.7
of [2], p. 178. Therefore, A is open in M. Now let (8,,, Pn) € 4, (8yns D)
— (8, p), and choose ¢, > 8, such that ({,,p,) € M. Let ({,p) be the
limit of some convergent subsequence of (¢,,, p,,). The inequality |¢,, —3,,!
>¢ yields t—s8>¢>0, 80 (s,p)e.A. Hence A is also closed in M.
Suppose that A = M. Then for any p € N we could find a sequence s,,
of real numbers such that s, ,—8, > ¢ and (8,,p) € M for any positive
integer m, which would contradict the compactness of M. Therefore A is
empty, which completes the proof.

Using Theorem 1 and Lemma 1 we obtain immediately

COROLLARY 1. If the quotient M|f is a Hausdorff space and M is
a compact spacelike submanifold of M, then

(i) M intersects each maximal integral curve of df at exactly one point;

(i) M is diffeomorphic to M [f, in particular, any two compact spacelike
submanifolds of M are diffeomorphic.

The assertion of Theorem 1 can be strengthened under some addi-
tional assumptions about the time function f. An example of this kind
is given by the following
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PrOPOSITION 3. If df i8 a complete vector field and g(df, df) < ¢ for
some constant ¢ < 0, then there exists a diffeomorphism Q of M onto R x f~'(0)
such that the diagram

M 3 R xf1(0)
FAVN'S )
R

commutes, pr being the natural projection, and @ maps the maxrimal integral
curve of df through any p € f~'(0) onto R X {p}. In particular, M [f is a Haus-
dorff space and it i3 diffeomorphic to each of the submanifolds f~'(¢) of M
for t e R.

Proof. Let y, be the flow of df and consider a maximal integral
curve R>t+> y,p. The inequality

d
Ef(w:p) =g(df,df)<e<0

shows that, along this curve, f assumes all real values. Therefore, for any
p € M there exists exactly one #(p) € R such that f (yymP) = 0. Applying
the implicit function theorem to the assignment (¢, p) — f(y,p) we conclude
that p > t(p) is a C*-function. Now define Q: M — R xf~'(0) by Q(p)
= (f(»), vymP)- It is clear that Q is one-one and maps onto R x f~'(0).
For a vector ¥ = p, € T,M we have

d
QtY = _d—s (f(pa)o 1nl"l(p_.,)ps)ls=l) = (df( Y)’ (wt(p))* Y + dt( Y) df)‘

Suppose that @, Y = 0. Then df(Y) = 0, i.e., Y is orthogonal to df,
and (yyp)s« Y = —dt(Y)df is tangent to an integral curve of df, hence so
i8 Y = (y_yp)s(vyp)s ¥, which yields ¥ = 0. Therefore, @ is a diffeo-
morphism and it is easy to see that it has all the desired properties, which
completes the proof.

Given a timelike 1-form » on M, the orthogonal complement '
of o is an n-dimensional spacelike distribution of class C*® on M. If w is
closed, that is dw = 0, then w' is involutive, i.e., through each point of M
there passes an integral manifold of w'. In fact, such a manifold can be
defined by F = const, where F is a function with dF = w in a neighbour-
hood of the given point. For a closed timelike 1-form o on M, each point
p € M lies in a unique maximal integral manifold of w' (see [1], p. 88-93).

ProPOSITION 4. Suppose that M |f is a Hausdorff space. If o is a closed
timelike 1-form on M such that some maximal integral manifold N of o™
18 compact, then o 18 the gradient of some time function F on M.

Proof. Let p € M. By (i) of Corollary 1, N intersects the curve ¢ — ¢,p
for exactly one parameter value. We define the function T: M — R
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by the relation gz,,p € N. For anyte Rand p € M we have clearly T (¢p)
= T'(p)—t. Given p € M, let F be a primitive funection of » in a neighbour-
hood of gry p such that F(ppy,p) = 0. Applying the implicit function
theorem to the assignment (¢, q) — F(¢,q), we conclude that the function T’
is of class C°. Now we define the C®-function F: M — R by

T(p) T(p)

. d
Fo) =~ [ ool = - | o[ goa)a.

Suppose that the points p and ¢ lie in an integral manifold P of o'
and choose a piecewise C*-curve z: [0,1] — P with #(0) = pand z(1) = ¢.
Set 8 = [0,1]x [0, 1]. The formula K(s,?) = @iz« (8) defines a piece-
wise C®-mapping K: S8 — M. Using the fact that » is orthogonal to
the curve o as well as to the curve $ 1= @py,))2(8), and applying the
Stokes formula, we obtain

1 d 1 d

0= fK‘dw = f w(ﬁ %T(q)Q)dt— f o (E ‘Ptr(p)P)dt
S 0 0
T(@) T(p)

d d
_ f o (5w}t f o[ 0e)@t = Fip)-F (0.

Therefore, F' is constant along any integral manifold of w'. Thus,
for any p € M, dF, = cw, for some real number ¢, since both vectors dF,
and o, are orthogonal to w;.

Consider the vector

d
Xp =Eq’aplsao'
We have
T(ogp) T(p)-s
Flgp) = — [ o(Xipep)dt = — [ oX(p,.p)d

0 0

T(p) 8

= — [ o(X(@p)dt = [ o(X(pp))dt,
8 T(p)
hence

d
AF,y(X,) == F(@p)loms = 05(X,) # 0,

which shows that ¢ = 1 and dF, = w,. Therefore dF' = w, which completes
the proof.
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3. The non-Hausdorff case. It will be shown in the sequel that both
assertions of Corollary 1 fail in general if M /f is not a Hausdorff space.
Moreover, no additional assumptions about the topology of the compact
spacelike submanifolds can help it.

First we prove

LEMMA 2. Let M be an n-dimensional Hausdorff manifold. Then there
exist open subsets U and V of M with disjoint compact closures and a positive
definite metric h on M such that both (U, h) and (V, h) are isomeiric to
the open unit ball in the Euclidean space R".

Proof. Let A’ be any positive definite metric on M. Choose open
subsets U’ and V' with disjoint compact closures and a positive definite
metric A’ on U UV’ such that both (U, ") and (V', ') are isometric to
the n-ball of radius 2. Let U < U and V < V' be the subsets correspond-
ing to the unit n-ball in the above isometries. Now let F be a C*-function
on M such that 0 < F <1, F =0on UuV and F =1 on an open set
containing M —(U' U V’). It is easy to see that U and V together with
the metric h = Fh'4+ (1 —F)h" satisfy our assertion, which completes
the proof.

THEOREM 2. Let M be an n-dimensional compact Hausdorff manifold.
Then there exists an (n -+ 1)-dimensional Hausdorff manifold M with a Rie-
mannian meiric g of index one and with a time function f such that M can
be embedded in M as a spacelike submanifold imtersecting some integral
curve of df at two poinis.

Proof. Choose U, V, and & as in Lemma 2. Let F' be a C”-function
on M such that F =0 on U and F = 3 on V. Define the Riemannian
metric § and the function f on R x M by

(RxM,3) =(R,(dx)?)x(M,h) and f(¢,p) =t+F(p).

We shall identify M with the submanifold {0} x M of R x M.
Let Df denote the gradient of f in (R x M, g). Clearly, Df # 0 at
each point of R x M. For p € M, the vector

a
Y= _Et- (ty?)lt-o

is g-orthogonal to M and satisfies the relation §(Df,, Y) = 1. Therefore, Df
is transverse to M.
The formula

9(Z, Df,)
vZ2) =————-Df, forpeM,ZelT M,n(Z,Z)=1
§(Dfp, Dfp) "7 ’ P
defines a differentiable mapping v: T'M — T(R x M), T'M being the
space of the unit tangent bundle of (M, k). The Schwarz inequality yields

§(Z,(2)) = §(v(2),0(2)) < 1,
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80 in view of compactness of 7'M we may choose ¢ > 0 such that

§(Z,v(2) < for any ZeT'M.

1+ ¢

Now let g be the unique C* Riemannian metric of index one in R x M
such that

9(Df, Df) = —c*g(Df, Df), g¢g(Df,Y)=0 and ¢(Y,Y)=g(¥Y,Y)

for any vector Y g-orthogonal to Df. For any Z € T' M we have
§(Df,Z—0(2)) =0,
whence
9(Z,Z) = g(v(Z),v(2))+9(Z—v(2),Z—v(Z)) = —c*§(Z, v(Z))+

+1-g(2,0(2)) =1-(1+¢")g(Z,0(2)) > 1- 1+3=

Thus M is spacelike in (R x M, g). Let df be the gradient of f in the
sense of g. Clearly, ¢g(df, Y) = 0 whenever §(Df, Y) = 0, which shows
that df is parallel to Df at each point. In particular, both gradients have
the same integral curves up to a change of parameter. Thus f is a time
function in (R x M, g).

Define the open submanifold M~ of R x M by

M =(-1,1)xMu(—1,2)x Tu(-2,1)x V.

The mapping H: (1,2)x U—->(—2, —1)x V, given by H(t, p)
= (t—3,H’ (p)), where H' is any isometry of U onto V, is an isometry in
the sense of both § and g (since F' is constant on both U and V) and satisfies
the condition fo H = f. Let M be the space obtained from M by identi-
fying (1, 2) x U with (—2, —1) x V by means of H. It is easy to see that M
is an (n»+41)-dimensional Hausdorff manifold with a C* differentiable
structure induced in a natural manner from M. Moreover, g and f induce
a Riemannian metric of index one and a time function on M, denoted
for simplicity also by g and f. Clearly, M is embedded in M in an obvious
manner as a spacelike submanifold.

Since F' is constant on both U and V, the field df is tangent to the
lines R X {p}, p € UU V. It is now clear that for any p € U the segments
(—1,2)x{p}and (—2, 1) x {H'(p)} define together an unparametrized in-
tegral curve of df in M which intersects M at two points, namely at (0, p)
and at (0, H'(p)). This completes the proof.

Forn =1 and M = §' the above construction is illustrated in Fig. 1.
The 2-dimensional manifold M is embedded in R?® and its metric g of
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index one is the one induced from (dx)%+ (dy)? — (dz)? by the embedding.
Our time function f coincides with the coordinate projection z and the
integral curves of df are represented by vertical segments. The spacelike
circle in M is denoted by the dark line.

z=f

|_—

Fig. 1

THEOREM 3. There exists an (n -+ 1)-dimensional Hausdorff manifold M
with a Riemannian metric g of index one and with a time function f such that
each compact n-dimensional Hausdorff manifold can be embedded in M
as a spacelike submanifold.

Proof. Since there exist only countably many non-diffeomorphic
compact n-dimensional Hausdorff manifolds, we may choose a sequence
M, k=1,2,..., which contains a diffeomorphic image of each such
manifold. For each M, find U,, V,, and h, as in Lemma 2. Let H; denote
an isometry of V, onto U,,, and define the positive definite metric g,
and the metric of index one g, on R x M, by

(R X My, g,)= (R, (dx)?) X (M}, hy)
and

(RXM,, g) = (R, —(dw)z)x (Mpy hy).

We identify M, with the g,-spacelike submanifold {k} x M, of R X M,.
Clearly, the natural projection

Jo =Pr: RxM,— R

is a time function in the sense of g,. Define the open submanifold M,
of RxM, by

M, = (k=3 k+3) x MU (k—3},k+1) X U,u(k—1,k+3) x V..
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The mapping
H,: (k,k+1)x Uy —(k, k+1) X Vi,

given by H,(t, p) = (t, H,(p)) is an isometry in the sense of §, and g,

as well as in the sense of g, and g,,,. Moreover, f,,,0H, = f,. Let M

be the space obtained from the disjoint union |JM, by identifying
k

(ky 5+1)x U, =« M, with (k,k+1)x Vi, = M,,, by means of H,,
k=1,2,... It is easy to see that M is an (n+ 1)-dimensional Hausdorff
topological manifold and it is provided with a natural C differentiable
structure. Clearly, the metrics g, and functions f, induce a C* Riemannian
metric g of index one in M and a time function f on (M, g). For each k, M,
is embedded in M as a spacelike submanifold, which completes the proof.
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