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CONFLUENT AND RELATED MAPPINGS
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A compactum is a compact Hausdorff space. All spaces considered
in this paper * are assumed to be compacta. A continuum is a connected
compactum. A mapping f: X—Y is a continuous function from X to Y.
A mapping f: X—Y of X onto Y is said to be confluent (see [1], p. 213)
if, for each subcontinuum K < Y and a component C of f~'(K), f(C) = K;
and it is said to be weakly confluent (see [3]) if, for each subcontinuum
K c Y, there exists a component C of f~!(K) such that f(C) = K. Every
open mapping is confluent (see [8], p. 148) as is every monotone mapping.

In this paper conditions under which certain mappings are confluent
or quasi-interior are investigated, and it is shown that every mapping
from a metric continuum onto an are-like continuum is weakly confluent.

THEOREM 1. If f: X—Y is a confluent mapping of X onto a continuum
Y, then there is a subcontinuum L < X such that f| L is a confluent mapping
of L onto Y and L is minimal with respect to this property.

Proof. Let X’ be a component of f~!(Y) and

¢ = {H: H is a subcontinuum of X’
and f|H is a confluent mapping of H onto Y}.

Let 2 be a maximal totally ordered (by inclusion) subcollection of
% and

L= H.
He2
Then, L is clearly a continuum which is mapped onto Y by f. Let
K be a subcontinuum of ¥ and let O be a component in L of f~!(K). For
each He 9, let Oy be the component in H of f~!(K) which contains C.
Thus f(Cy) = K for each He 9. Clearly,
C=NCy

He2

* Almost all the results of this paper are contained in author’s doctoral disserta-

tion [7] which was partially supported by a National Science Foundation Science
Faculty Fellowship.
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80 f(C) = K. Thus f|L is a confluent mapping of L onto Y and, by con-
struction, L is minimal with respect to this property.

A mapping f: X—Y of a metric compactum X onto a metric com-
pactum Y such that if ye ¥, C is a component of f~*(y), and U is an open
set containing C, then ye Int(f(U)), is called quasi-interior [9]. Lelek and
Read [4] showed that every quasi-interior mapping is confluent.

THEOREM 2. Let X, Y, W and Z be metric compacta. If f: X—>W s
a quasi-interior mapping of X onto W and g: Y—Z is a quasi-interior map-
ping of Y onto Z, then

fxXg: XxY->WxZ

18 a quasi-interior mapping of X X Y onto W X Z.
Proof. Since f and g are quasi-interior, f = rs and ¢ = tu with »
and ¢ light and open and ¢ and 4 monotone [9]. Thus

fxg =(rxt)(sxu)

with r x¢ light and open and 8 X » monotone. Hence f x ¢ is quasi-interior
[ibidem].

A similar result holds for confluent mappings onto locally connected
metric spaces:

COROLLARY. Let X and Y be metric compacta and let W and Z be locally
connected metric spaces. If f: X—>W i8 a confluent mapping of X onto W
and g: Y—>Z i8 a confluent mapping of Y onto Z, then

fxg: XxY->WxZ

18 a confluent mapping of X X Y onto W X Z.

Proof. By a result of Lelek and Read [4], confluent mappings onto
locally connected spaces are quasi-interior. Hence, by Theorem 2, fxg
is quasi-interior and thus confluent.

A continuum is hereditarily umicoherent if the common part of each
two of its subcontinua is connected. It is known [4] that if f: XY is
a mapping of the continuum X onto the hereditarily unicoherent continuum
Y = Y,u...uY,, where Y, are continua such that the mappings f|f~*(Y,)
are confluent (¢ =1, ...,n), then f is confluent. An example of Lelek
(see [4], Example 4.2) can be used to show that f need not be confluent if

with the mappings fif~!(Y,) confluent (n =0,1,...).
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Example. Put

1
2,y): 2<y<3}u

X = {(=, 2): —1<w<2}u{(sin

1
xr—2

v{(2,y): —1<y<2}u{(m,sin ): 2<w<3},

and let B be the equivalence relation defined by
R ={(t,2),(2,8): —-1<t<2}u
U{((27 t), (¢, 2)): -1<t< 2}U{(.'p7p): pe X}.

Let f be the projection mapping of X onto ¥ = X/R. Let 4, =
= {(#,2): —1 << 2} and, for each positive integer =, let 4,, be the
intersection of X with the strip of the plane determined by the inequality

2+

1
1 <m<2+';7

and let 4,, , be the intersection of X with the strip determined i)y

o1t y<oil
n+1 SYS n’

Let Y, = f(4,) (»n =0,1,...). Clearly,
Y=Y,

Nne=0
is hereditarily unicoherent, each Y, is a continuum, and the mappings
fIf~1(X,) are confluent. Let X, and X, be the intersections of X with the
strips determined by the inequalities || <1 and |y| < 1, respectively. No
subcontinuum of X maps onto K = f(X,u X,). Hence, f is not confluent.

A similar result to the finite case holds for quasi-interior mappings.

- THEOREM 3. Let f: X—Y = Y,0Y, be a mapping from the metric
compactum X onto the metric space Y, with Y, and Y, compact. If fIf~(Y,)
and f|f~'(X,) are quasi-interior, then f i8 quasi-interior.

Proof. Let ye ¥, C be a component of f~(y), and let U be an open
set containing C. Suppose, by the way of contradiction, that y¢ Int(f(U)).
Then y is the limit of a sequence y, of elements of Y\f(U). If there is
a subsequence Yng of y, such that, for each ¢, y, e Y,, then ye ¥,. Thus,
Unf~1(Y,) is open in f~!(Y,) and contains C. Hence,

ye Int[f(UNf(Xy)]
relative to Y,. Thus, there is an n; such that

Yaye It [£(Tf (X))
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relative to Y, which is the desired contradiction. A similar contradiction
is obtained if there is a subsequence y, such that, for each ¢, Yn;e Xy
Hence yeInt(f(U)), and thus f is quasi-interior.

A metric continuum X is said to be arc-like (respectively, tree-like)
if, for each positive number b, there is an arc (respectively, tree) I and
a mapping f: X—I from X onto I such that if ze I, then diam (f~(2)) < b.

If
x=[]x

ted

is a product space, then p; denotes the projection mapping from X onto X,.
The following lemma together with a characterization by Mardesié and
Segal [5] can be used to show that every mapping from a metric continuum
onto an arc-like continuum is weakly confluent:

LeMMA. If f: X—1 = [0, 1] is a mapping from the continuum X onto
I, then f is weakly confluent.

Proof. Let [a, b] be a subcontinuum of I. Let K = {(x, f(x)): e X}.
Clearly, K is a subcontinuum of X x I. Suppose, by the way of contradic-

tion, that KN (X X [a, b]) does not contain a continuum irreducible between
Kn(X x {a}) and KnN(X X {b}). Then

Kn(X X [a,bd]) = PuQ,

with P and @ disjoint closed sets containing KN (X X {a}) and KN (X x {b}),
respectively (see [6], p. 15). Let

P’ =Pu[p;!([0,a)nK] and @ =Qu[p;i([b,1)NK].

Then K = P’u@’, which is a contradiction, since P’ and @’ are mu-
tually separated. Hence, there is a subcontinuum L of KN(X X [a, b])
irreducible between KN (X x {a}) and KnN(X x {b}). Clearly, f(pl(L))
= [a@, b]. Thus f is weakly confluent.

THEOREM 4. If f: X—Y is a mapping of the metric continuum X onto
an arc-like continuum Y, then f is weakly confluent.

Proof. Let f: X—Y be a mapping of X onto Y. By a theorem of
MardeSié and Segal [5], there exist a sequence Y; of arcs and, for ¢ < j,
a mapping p! from ¥; onto Y, such that

(1) pi is the identity mapping of Y, onto Y;,

(2) if i <j<k, then pf = pip}, and

(3) Y =lim(X;, pj) ={z: ze [|Y; and, if @<j, Pg(Pj(z)) =Pi(z)}—
<~ i=1

Since each Y; is homeomorphic to [0, 1], it can be assumed, without
loss of generality, that ¥, =[0,1] (¢4 =1,...). Let C be a subcon-
tinuum of Y. By the lemma, p;f is weakly confluent for each i. Thus,
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since C; = p;(C) is a subcontinuum of Y,, there exists a subcontinuum
K, c X such that p;f(K;) = C; for each ¢. There exists a subsequence
K, which converges to a limit subcontinuum K of X. Since Y is homeo-
morphic to 1i<_m(Y,,i, p:,'p, suppose, without loss of generality, that K

is the limit of the sequence K;.

Let ye C. For each ¢, let z;e K, such that p,f(x;) = p;(y). Then there
is an xe K such that x is a cluster point of the sequence x;. Suppose, by
the way of contradiction, that f(z) # y. Then, there is an n such that
P.f(x) # p,(y). Hence, there exist disjoint open sets U and V such that
Pof(@)e Uand p,(y)e V. Thus f~'[p,'(U)]is an open subset of X contain-
ing . Hence, there exists an m > n such that x,,¢f~'[p,'(U)]. Therefore,

Pn(Y) = PP (Y) = D3 Puf(@n) = Pu[f(2n)]e U,

which is the desired contradiction. Hence, f(z) = y and thus C < f(K).
Let x¢ K. There exists a sequence x; having the limit # such that
each z;e K;. Thus p;f(x;)e C; (+ =1,...). For each ¢, let

2 pi ' [psf (2:)1NC.

Since C is compact, there is a ze C such that z is a cluster point of the
sequence z;. By an argument similar to that above-given, the assumption
that f(z) # 2 leads to a contradiction. Hence f(K) = C, and thus f is
weakly confluent.

A mapping f of a space X onto a space Y is said to be locally confluent
[2] if, for each point ye Y, there is an open set O =« Y containing y such
that f|f~!(0) is confluent. It has been shown [4] that all locally confluent
mappings onto hereditarily arc-wise connected spaces are confluent,
and further, if f: X—Y is locally confluent and B « Y is a closed subset,
then

fIif7'(B): f71(B)>B

is locally confluent. The arc-wise connected component of a point p of
a space X is the union of all paths (i.e. continuous images of [0,1]) in
X which contain p. The following theorem answers a question raised by
A. Lelek in a letter to the author:

THEOREM 5. If f: X—Y 1is a locally confluent mapping of the metric
continuum X onto the tree-like continuum Y, with Y having no more than
two arc-wise connected components, then f is weakly confluent.

Proof. Clearly, Y can contain no indecomposable continuum. If ¥
has only one arc-wise connected component, then Y is hereditarily are-
wise connected (since Y is hereditarily unicoherent), and thus f is confluent.
Hence, suppose that Y has exactly two arc-wise connected components,
A and B. Let K be a subcontinuum of Y. If K <« A or K < B, then K
is hereditarily arc-wise connected, f|f~'(K) is confluent, and each com-
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ponent of f~!(K) maps onto K. Thus, suppose that p, ge K with pe A\B
and ge B\ A. Since

K = (AnK)u(BNK),

there exists a 2ze (ANK)N(BNK) or a ze(ANK)Nn(BNK). Suppose,

without loss of generality, that ze (ANK)N(BNK). Let C be a component
of f~!(K) such that CNnf~'(q) # @. Let we CNf~(q). There is a sequence
z; of points of BN K such that z; has the limit 2. For each 1, let K; be the
(unique) arc between ¢ and 2;. Since Y is hereditarily unicoherent, each
K, « BNnK. Let H; be the component of f~!(K;) (¢ = 1,...) containing w.
Each K, is hereditarily arc-wise connected, so fif~'(K,) is confluent.
Thus f(H;) = K; (¢ =1,...). Let

H=\ H,.

i=1

Clearly, H is a subcontinuum of f~!(K), and thus of C. For each pos-
itive integer 4, let x,¢e H;nf~'(2;). There exists a cluster point ¢ H of
the sequence z;, and, clearly, f(z) = 2. Let ye K. If ye A, let K' « ANK
be the arc between z and y. Then f|f~!(K’') is confluent. Thus, if ¢’ is
the component of f~!(K’) containing #, then ¢’ = C and f(0') = K/,
80 ye f(C). If ye B, let K'’ be the arc between ¢ and y. Then K’ « BNK
and f|f~'(K") is confluent. Hence, if ¢'’ is the component of f~!(K"’)
containing w, then ¢’ = C and f(C”’) = K"'. Hence yef(C). Thus f(C)
= K and f is weakly confluent.

An analogue of Theorem 5 is not true for Y having three arc-wise
connected components (see [4], Example 4.2).
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