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1. Notation and preliminaries. Let X;, X;,... be a sequence of real-
valued, independent and identically distributed random variables. It was
proved by P. Lévy [7] that all possible limit laws of suitably normed sums

(1.1) an(X1+ Xz + ...+ Xu) + bn

with a, € (0,00) and b, € (—00,0) form the family of stable laws. A. Ya.
Khintchine [3] showed that every infinitely divisible law can be obtained as
the limit of a subsequence of probability distributions of (1.1). W. Feller [2]
restricted the summands to be in a class which makes the normed sums (1.1)
stochastically compact, i.e. so that the sequence of probability distributions
of (1.1) is conditionally compact and all its cluster points are nondegenerate
laws. Let F be the family of all possible cluster points for sequences obeying
Feller’s condition. It is clear that F contains all stable laws and is contained
in the family of infinitely divisible laws. In other words, the characteristic
function of a probability measure P from F is given by the Lévy—Khintchine
formula

(1.2) P(t) = exp (iat +-I (e“z -1 - - f:zzz) J:Tn((‘i"’))) ,

where a € (—00,00), m(z) = min(z2,1) and N is a finite Borel measure on
the real line. It is evident that the relation P € F does not depend upon
the parameter a. Denote by H the family of all measures N corresponding
in (1.2) to probability laws from F. A nice analytic characterization of the
family H has been given by W. E. Pruitt [8].

PRUITT’S THEOREM. A measure N belongs to H if and only if it does
not vanish identically and there ezists a positive number ¢ such that

N(dy) .
(1.3) z? < —— N(dy)
ML m(y) ,[x m( )
for all z € (0,00).
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We shall lean heavily on this theorem, which provides a tool for investi-
gating the family H.

Let Fgym be the subset of F consisting of symmetric probability dis-
tributions. It is clear that these distributions can be obtained as cluster
points for the sequences of probability distributions of (1.1) with b, = 0
and symmetrically distributed X,, (n = 1,2,...). Of course, each measure
from Fgym is of the form e(M) where

M(dz)
m(z)

(1.4) é(M)(t)=exp [ (costz 1)
0

and M is a finite Borel measure on the half-line [0,00). Put Hyym = { M :
e(M) € Fyym }. By & we denote the set of all Borel mappings from (0, o)
into [0,1] and by é, the probability measure concentrated at the point a.
The symbol —A is used for the set { —z : £ € A}. The following simple
statement reduces the study of limit laws to the symmetric case.

PROPOSITION 1.1. A finite Borel measure N belongs to H if and only if
there ezist a measure M in Hyym and a function ¢ in @ such that

(1.5) N(A)= M{0})bo(4)+ [ ¢(z) M(dz)
AN(0,00)
+ [ (Q-e(@) M(de)
(=A)n(0,00)

for all Borel subsets A of (—00,00).

Proof. Given M € H,yn, and ¢ € & we define the measure N by means
of (1.5). Then we have the formulae

N(dy) _ ¢ M(dy) P (Y
0 S ww = wme I eV Jag e

for z € (0,00), which, by Pruitt’s Theorem, yields N € H.
Suppose now that N € H and put for any Borel subset B of [0, c0)

(1.7)  M(B) = N({0})éo(B) + N(BN(0,00)) + N((-B) N (0, 0)).

It is easy to check (1.6), which, by Pruitt’s Theorem, shows that M € Hyym.
Since N(BN(0,00)) < M(B) for Borel subsets B of [0, ), we have, by the
Radon—Nikodym Theorem, the existence of a density function ¢ € & such
that N(B N (0,0)) = [pne.a0) P(z) M(dz). By (1.7) we get N({0}) =
M({0}) and N((-B)Nn (0,00)) = f(—B)n(O,oo)(l — ¢(z)) M(dz) for Borel
subsets B of [0,00). From this (1.5) follows, which completes the proof.
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The aim of this paper is to give an integral representation for measures
belonging to Hsym. The method of proof consists in finding the extreme
points of a certain convex compact set formed by measures from Hgym.
Once the extreme points are found one can apply a theorem by Choquet on
representation of the points of a compact convex set as barycenters of the
extreme points.

Before proceeding to state and prove the main results of this paper we
shall establish auxiliary propositions.

2. Some functions associated with measures. Given a finite Borel
measure M on [0,00) and z € (0,00) we put

T M(dy) Ty

2.1 i(M,z) = , (M, z) = M(dy),
(21)  iM,z) !m(y) i(M, ) ofm(y) (dy)
(2.2) k(M,z) = %i(M,:c) + %z’j(M,z).
It is easy to check the formulae
oo}

(2.3) i(M,z)= [y~ dj(M,y),

(2.4) Jim z~2j(M,z) =0,

(2.5) k(M,z)= [ y3j(M,y)dy.
Hence the function k(M, -) is differentiable on (0, 00) and fulfils the equations
(2.6) i(M,z) = zk'(M,z) + 2k(M, z),

(2.7) j(M,z) = —z°k'(M, 7).

In what follows S(M) will denote the support of the measure M, i.e.
the smallest closed subset B of [0,00) with M([0,00) \ B) = 0. Further,
A(M) will denote the set of atoms of M. It is evident that the functions
i(M,-) and j(M,-) are continuous from the left and have right-hand limits
on (0,00). Moreover, the sets of their discontinuity points coincide with
A(M)n (0, 00). .

Denote by G the set of all measures M with 0 € S(M). Since j(M,z) > 0
for all M € G and z € (0,0), the function

z%i(M, )
i(M, z)
is well defined, continuous from the left and has a right-hand limit (M, z+)

(2.8) I(M,z) =
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at every z € (0,00). A simple calculation shows that
(2.9) I(M,z+) < (M, z)

for all z € (0, 00) and strict inequality holds if and only if z € A(M)N(0, 00).
Given a closed subset A of [0, 00) we put w(A) = sup A. In what follows
the symbols [0, w(A)] and (0, w(A)] for w(A) = oo will denote [0,00) and
(0, 00) respectively. For any z € [0, w(A)] the function n(A,z) = minA N
[z,00) is well defined. Obviously, it is continuous from the left and has a
right-hand limit at every z € [0,w(A)). Moreover, n(A,z) = z if and only
if z € A. Also, n(A,z) > z for all z € [0, w(A)].
Suppose that M € G and A O S(M). Then M([z,n(A,z))) = 0 for
z € [0,w(A)], which, by the definition (2.8), yields
72
(2.10) I(M,z) = WI(M, n(A,z)) for z € (0,w(S(M))].
We are now in a position to establish the basic property of the function [.
PROPOSITION 2.1. Suppose that M1, M, € G and
(211) I(Ml,z) = I(Mz,z)
for z € S(M;)U S(M3). Then M, is proportional to M,.
Proof. It is evident, by (2.8), that I(Mj,z) = 0 for z € (w(S(M;)), )
( = 1,2), which, by (2.11), yields w(S(M;)) = w(S(M3)). Setting A =
S(M;)U S(M;) and using (2.10) we conclude that (2.11) is fulfilled for all
z € (0,00). By (2.6)-(2.8) we have
_ 2k(Mj,:t)
zk’(Mjs z)
for j = 1,2 and z € (0,0). Consequently, (2.11) can be written in the form
k'(My,z) _ K'(My,z)
k(My,z) ~ k(M,,z)
for z € (0,00). This proves that k(M,,-) is proportional to k(M,,-), which
yields the desired assertion.

I(MJ',:B) = -1

Suppose that M € Hyym. Since M does not vanish identically, we have,
by (2.1), {(M,z) > 0 for sufficiently small z, which, by Pruitt’s Theorem,
yields j(M,z) > 0. Thus M([0,z)) > 0 for sufficiently small z and, conse-
quently, 0 € S(M). This proves the inclusion

H,ym C G.

Given ¢ > 0 we denote by G, the subset of G consisting of measures M
fulfilling the condition

sup{!(M,z):z € (0,0)} <ec.
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It is clear that in the symmetric case Pruitt’s Theorem can be rewritten in
the form

(212) Hsym = U Gc’
c>0
which reduces the study of Hyym to that of G, for all ¢ > 0.
Since l(aM,z) = (M, z) for a > 0 and

j(Ml,z)
j(Mlaz) +j(M2,$)
j(Mzaz)

j(Mhz) + j(Mz,:t)
the set G, is closed under addition and multiplication by positive numbers.
Suppose that M, € G, and M, — M. Then {(M,,z) — I(M,z) for
z € (0,00)\ A(M). Hence I(M,z) < c for z € (0,00)\ A(M), which, by the
continuity from the left of f(M, ), yields M € G.. Thus G, is closed under
passages to the limit.

Given M € G and ¢ > 0 we put

T(M,c)={0}u{z:2>0, I(M,z)=c}.

Taking into account the continuity from the left of /(M, -) and formula (2.9)
we infer that T'(M, c) is closed for M € G.. Setting A = S(M) and applying
(2.10) we get I(M,z) < cif M € G, and z ¢ S(M). Consequently, for any
MeG,

(2.14) T(M,c) C S(M).

Given a sequence A, of subsets of [0,00) we denote by Li,_o A, and
Lsn—o0An the lower and upper topological limit respectively ([5], Section
29). If Lip~o0An = Lsp00An = A, then we say that the topological limit
Lim,_, A, = A exists.

Let f be a function which assigns closed subsets of [0,00) to mea-
sures from G. The function f is said to be lower (respectively upper)
semicontinuous if M, — M yields Li, o f(M,) DO f(M) (respectively
Lsn—oo f(My) C f(M)) ([6], Section 43,II). One can easily check that the
function M — S(M) is lower semicontinuous.

(2.13) I(Ml + Mz,z) =

I(Ml,z)

I(Mg,z)

LEMMA 2.1. The function G, 3 M — T(M,c) is upper semicontinuous.

Proof. Suppose that M, € G, and M, — M. The limit measure M
belongs to G, because G, is closed. Given an arbitrary subsequence n; <
nz < ...and a sequence zx € T(M,,,c) such that z; — z. It is sufficient to
show that z € T(M,c). Since 0 € T(M, c), we may assume without loss of
generality that z > 0 and z; > 0 (k =1,2,...). For any number y ¢ A(M)
with 0 < y < = we have, by (2.8), I(M,,,y) > y%;zl(Mnk,zk) = cyza:,:2
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(k=1,2,...) and I(M,,,y) — I(M,y), which yields cy?z~% < I(M,y) < c.
Letting y — z and taking into account the continuity from the left of (M, )
we conclude that [(M, z) = ¢, which completes the proof.

LEMMA 2.2. Suppose that M € G, u € T(M,¢) and (v,v)NS(M)=0
for some v > u. Then u € A(M).

Proof. In the case v = 0 the origin is an isolated point of S(M) and,
consequently, belongs to A(M). Suppose now that u« > 0 and u ¢ A(M).
Then, by (2.1), (M, u) = i{(M,v) and j(M,u) = j(M,v), which yields

¢ =I(M,u) = v?*v~2I(M,v) < cu’v?,
This contradiction shows that u € A(M), which completes the proof.

In what follows Q. will denote the subset of G, consisting of all mea-
sures M fulfilling the equation T(M,c) = S(M). Of course, the set Q. is
closed under multiplication by positive numbers. The lower semicontinuity
of M — S(M) and the upper semicontinuity of M — T'(M,c) on G, yield,
by (2.14), the following simple statement.

LEMMA 2.3. The set Q. is closed.
Furthermore, as an immediate consequence of Proposition 2.1 we get

ProPosITION 2.2. If M1, M; € Q. and S(M;) = S(M;), then M; is
proportional to M,.

3. Extreme points. By G! and Q! we shall denote the subsets of G,
and Q. respectively consisting of probability measures.

PROPOSITION 3.1. The set Gl is conver and compact.

Proof. The convexity of G follows from the fact that G, is closed
under addition and multiplication by positive numbers. Since G. is also
closed under passages to the limit, to prove that Gl is compact it suffices
to show that it is conditionally compact.

Put for z € [0, 00)

d(z) = sup{ M([z,)): M € Gl }.

This function, being non-increasing, tends to a limit d(o0) as z — oco. Given
1 < u < v we have j(M,u) < u?, which yields

J(M,0) = (M, )+ [ 4 M(dy) < o + o3 (M([u,0)) - M([v, 00))).

Further, for any M € G! we have M([v,0)) < i(M,v) < cv=2j(M,v),
which together with the previous inequality implies

M([v,00)) < cuv™? + ¢(M([1,00)) — M([v, 0))).
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Using the above inequality we get
(1 + ¢)d(v) < cu’v™? + cd(u).

Finally, letting v — oo and then u — oo we obtain (1 + c)d(o0) < ed(00).
Thus d(oo0) = 0, which shows that G! is conditionally compact. This ter-
minates the proof.

Since, by Lemma 2.3, Q! is a closed subset of G!, we have, as a conse-
quence of Proposition 3.1, the following statement.

PROPOSITION 3.2. The set Q! is compact.

In what follows by ext Z we shall denote the set of extreme points of a
convex set Z.

PROPOSITION 3.3. Q! C ext Gl.

Proof. Suppose that M € Q!. To prove that M € ext G! it suffices to
show that for any pair My, M, € G, fulfilling the equation M; + M; = M the
measure M; is proportional to M. One can easily obtain from this equation
the formulae S(M) = S(M;) U S(M;) and T(M,¢c) = T(M,,c) N T(M,,c),
which, by (2.14), yield for j = 1,2

T(M,c)=T(Mj,c) = S(M;) = S(M).
Thus M;, M, € Q.. Applying Proposition 2.2 we conclude that M; is
proportional to M, which completes the proof.

LEMMA 3.1. Let M € G.. Suppose that S(M)\ T(M,c) is non-empty
and consists of points isolated in S(M). Then M ¢ ext Gl.

Proof. The assumption that the points of S(M)\ T(M, ¢) are isolated
in S(M) implies

(3.1) S(M)\ T(M,c) C A(M).

Choose v € S(M)\T(M,c). Of course v > 0 and v € A(M). Since 0 € S(M)
we can find u € S(M) fulfilling 0 < u < v and

(3.2) - (u,9) N S(M) = 0.

The relation u € A(M) follows from Lemma 2.2 in the case u € T'(M,c)
and from (3.1) in the remaining case. Introduce the notation

a1 = M({u}), a2 =M({v}),

(33) _ [y _ [ M(dy)
w=JamMn a= [ 05

by = (v? — u?)"(azu® + a4u’v?)

3.4
(34) by = (v - uz)"l(a;;v2 + aquv?)

if ©u>0,
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1
(35) b =%, b2=§+a3 if u=0,
('3.6) ap = c—I(M,v),
.11 u? 4 v?
(3.7) a=min (2, 2a1b1 m(u),agb2 m(o)’

aoj(M,v)(cby + b2 + awz)"l) .

It is clear that the numbers ag, a1, a3, a3, by, b; and a are positive and a4 > 0.
Define a pair M;, M; of measures by setting for any Borel subset B of
[0,00) and r = 1,2

(38)  M.(B) = M(B) - (~1)’aM(B n (v,))

+(~1)"aby méf)au(B) — (~1)"ab, ":J(;’) 5,(B).

Taking into account (3.7) we get M,.(B) > M(BnN[0,u)) if « > 0 and
M.(B) 2 1a,60(B) if u = 0. Hence My, M; € G.
Now we prove that My, M, € G.. Observe that for z € (v, 00)
i(M,,z)=(1-(-1)"a)i(M,z),
J(Mr,z) = (1-(-1)"a)j(M,z) +(~1)"a(a3 + b1 — b2),
which, by (3.4) and (3.5), yields
J(Mp,z) =(1-(-1)"a)j(M,z).

Thus
(3.9) I(M,,z)=1(M,z) for z € (v,00).
Further, by (3.2), we have for z € (u,v]

i(M,,z) = i(M,v) - (-1)"a(aq + byv~?%),

j(My,z) = j(M,v)+ (-1)"ab;.
Thus, by (3.6),

z?i(M,,z) < v2i(M,,z) < v¥i(M,v) + a(aqv? + by)
= (¢ — ap)j(M,v) + a(aqv® + b3)
and, by (3.7),
a(aqv® + by + ¢by) < agj(M,v),

which yields

z%i(M,, ) < cj(M,v) - cab, < j(M,,z).
This proves the inequality
(3.10) I(M;,z)<c¢ for z € (u,v].
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In the case u = 0 formulae (3.9) and (3.10) prove the relation My, M, € G..
Suppose that u > 0 and z € (0,u). Then j(M,,z) = j(M,z) and

i(M,,z) = i(M,z) - (—1)"a(aq — bju~? + byv~?),

which, by (3.4), yields i{(M,, z) = i(M, z). Consequently, I(M,,z) = (M, z)
for z € (0,u). Comparing this with (3.9) and (3.10) we conclude that
M;, M; € G, in the case u > 0.

From (3.8) it follows immediately that M = 1(M; + M;). Consequently,
to prove that M ¢ ext G! it suffices to show that M; is not proportional
to M. Contrary to this, suppose that M; = bM for a positive constant b. In
particular, M;({u}) = bM({u}) and M;({v}) = bM({v}), which, by (3.3)
and (3.8), yields a; — abju~ m(u) = a1, az + abyv~2m(v) = azb. From
the first equation we get b < 1 and from the second one b > 1, which gives
the required contradiction. The lemma is thus proved.

LEMMA 3.2. Let M € Gl. Suppose that S(M)\ T(M,c) is non-empty
and contains at least one accumulation point of S(M). Then M ¢ ext G1.

Proof. Let u be an accumulation point of the set S(M) belonging to
S(M)\ T(M,c). Of course, u > 0. We know that T'(M,c) is closed and
I(M,-) is continuous from the left and has right-hand limits satisfying (2.9).
Consequently, we can find u;,u; with 0 < u; < u < u; and

sup{I(M,z):z € (w1,u3] } =c—ag

where ag > 0. Of course M((uy,uz]) > 0. The interval (u;, u2] contains an
accumulation point of S(M) and, consequently, can be divided into three
subintervals (v;, v], (v2, v3] and (v3, v4) such that u; = vy < vy < V3 < vy =
ug and M((vn,vn41]) > 0 (n =1,2,3). Introduce the notation

VUn+1 2 Un+1l
_ y _ M(dy) _
an = v.f+ m(y) M(dy), Ant3 = v-{ m(y) (n =1,2, 3)7

v 2

_ Y
ar = of (7] M(dy).

It is clear that a,,a,,...,a7 are all positive. Let by, b2, b3 be a solution to
(3.11) a1by + a2bs + a3zbs =0, a4by + asb; + agbs = 0,

not identically vanishing. Since all coefficients are positive, we conclude that
b1 = b2 = b3 is impossible. Without loss of generality we may assume that

(3.12) bal<1 (n=1,2,3).
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Put
(3.13) a = min (1, aoar(|b1|(ca1 + viay)
+ |b2|(caz + vias) + [ba(cas + vias)) ") .

It is clear that a > 0.

Define a pair M;, M, of measures by setting for any Borel subset B of
[0,00) and r = 1,2

3
(3.14) M,(B) = M(B) + ) _(-1)"ab, M(B N (vn, vn41)).

n=1

From (3.12) and (3.13) it follows that |ab,| < 1 (n = 1,2,3). Consequently,
M.(B) > M(BnN[0,v;)), which shows that M, € G.

Now we prove that M;, M, € G.. From (3.14) by simple computations
we get for z € (0, v]

i(M,,:c) = i(M,z) + (—1)"a(a4by + asbs + asbs), j(M,,z)=j(M,z)
and for z € (vq,00)
i(My,z)=iM,z), j(My,z)=j(M,z)+(-1)"a(a1b; + azb; + azbs),
which, by (3.11), yields
(3.15) I(M;,z)=I(M,z) for z € (0,v;]U (vq,00).
Suppose now that z € (v;,v4]. Then
i(My,z) < i(M,z) + a(ay|br| + as|bs| + as|b3]),
J(M;,z) 2 j(M,z) - a(ay|b1] + az|b2| + a3|bs]).

Since I(M, z) < c¢—aq for z € (v1,v4), we have z%i(M,z) < (c—ap)j(M, ) <
cj(My,z) + ca(ay|b1| + az|b2| + a3)b3|) — apar. Consequently,
z?i(My,z) < 2%i(M, ) + avi(aq|br] + as|be| + as|bs[)
< ¢j(My,z) + c(a1|b1] + az|b2| + as]bs|)
+ avi(aq|by| + as|bs| + as|bs|) — aoar,
which, by (3.13), yields z%i(M,,z) < cj(M,,z) for z € (v;,v4). This in-
equality together with (3.15) implies M, € G..

Obviously, M = 1(M; + M;). To prove that M ¢ ext G! it suffices to
show that M, is not proportional to M. The proportionality would imply

Mi((9n, va41]) = bM((v5s ¥n41])  (n=1,2,3)

for a positive constant b. Thus, by (3.14), we would have b, = b, = b3,
which is impossible. This terminates the proof.
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The following equality is an immediate consequence of Proposition 3.3
and Lemmas 3.1 and 3.2.

PROPOSITION 3.4. ext Gl = Q1.

4. An integral representation. Let £ be the space of all closed sub-
sets A of [0,00) with 0 € A. Identifying the points 0 and oo we regard the
half-line [0, 00) as a subset of a circle with the usual metric p. It is clear that
& consists of all p-compact subsets A C [0,00) with 0 € A. The metric p
induces the Hausdorff distance py between subsets of [0,00). It is easy to
see that the space £ with the metric py is compact. Moreover, by [6], Sec-
tion 42,11, the topology induced by py coincides with the topology induced
by the topological limit.

To prepare the way for obtaining an integral representation for measures
from G, we proceed to describe the measures belonging to ext G1. Given
A € € we put z(A) = min(1,w(A)) and for ¢ > 0, z € (0, w(A)]

2cz
cz? + n2(A,z)
We define a function h(A,e¢,-) by setting

(4.2) h(A,c0)=0,

(4.1) 9(A,c,z) =

n(A,z)
(4.3) h(A,e,z)=(1+c)lexp [ g(A,c,y)dy if z € (0,w(4)),
z(A)
w(A)
(44) h(A,c,z) =exp fg(A,c,y)dy if z € (w(A), o).
z(A)
Since
2cy

9(A,c,y) = for y € [z,n(A,z)),

we have, by (4.3),

cy? + n2(A,z)

n’(4,2)
cz? + n2(A,z)

T
exp [ g(A,c,y)dy
=(4)

(4.5) h(A,c,z)=

for z € (0, w(A)).
Observe that, by (4.1), the inequality n(A,z) > z yields
9(A,c,z) < 2¢(1+¢)"1z7!  for z € (0, w(A)).
Together with (4.2)-(4.4) this gives
(4.6) h(A,ec,z) < max(1,z2¢/0+9))  for z € [0, 00).
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Hence it follows that
(4.7) lim z2h(A,c,z) = 0.

T—+00

Moreover, using (4.5) it is easy to check that the derivative of the function
3772 exp [ 4, 9(4, c,y) dy is equal to —z~3h(4,¢,z) on (0, w(A)]. Thus

(o o] T
(4.8) f ¥y 3h(A,c,y)dy = %z‘z exp f 9(A,c,y)dy
z z( A)
for z € (0, w(A)).
Further, from (4.4) we get
00 1 w(A)
(4.9) f vy 3h(A,c,y)dy = §z'2 exp f 9(A,c,y)dy
z z(A)

for z € (w(A), ).

Observe that by the definitions (4.2)-(4.4) and formula n(A,w(A)) =
w(A) the function h(A,c,-) is non-decreasing and continuous from the left
on [0,00)." Consequently, there exists a Borel measure H¢ finite on every
bounded subset of [0, 00) such that

(4.10) HS([0,2)) = h(A,¢,z) for z € (0,00).
Since A coincides with the set of points of increase of h(A, ¢, -), we infer that
(4.11) S(HY) = A.
Put for any Borel subset B of [0, 00)
m

(4.12) MS§(B) = f % HS(dy).

B
Evidently, by (4.11),
(4.13) S(M4) = A.
Moreover, by (4.10),
(4.14) M4([0,z)) = h(A,c,z) for z € (0,1].

Integrating by parts the right-hand side of (4.12) and applying (4.10) we get
for z € (1, 00)

M;([0,2)) = M5([0,1))+ [ y~% H5(dy)
1

T
=z 2h(A,c,z) + 2 f y~3 h(A,c,y)dy.
1
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Using (4.5), (4.8) and (4.9) we obtain
(4.15) M4([0,z))=1 if w(A)<1 and z € (1,00),
(4.16) M5([0,z)) =1 —cn~2(A,z)h(4A,c,z)

if w(A)>1 and z € (1, w(A4)],
(4.17) M§([0,z))=1 if w(A)>1 and z € (w(A), ).
Hence, by (4.7), M4 is a probability measure. Observe that, by (4.10)
and (4.12),

j(M§,z) = h(A,e,z) for z € (0,00).

Moreover, by (2.5) and (4.8),

A
k(M§,z) = %z"z exp f 9(A,c,y)dy for z € (0,w(4))],
z(A)

which, by (2.6) and (4.5), yields
i(M§,z) = cn~%(A,z)h(A,c,z) for z € (0, w(A))].
The equality {(M§,z) = 0 for z € (w(A), ) is evident. Thus
I(M§,z) = cn™%(A,z)2?  for z € (0, w(A))

and I(M§,z) = 0 otherwise. This proves that M§ € G! and T(M§,¢) = A4,
which, by (4.13), implies M§ € Q. Applying Proposition 2.2 we conclude
that

Ql={MS:A€€}.

The lower semicontinuity of M — S(M) and the upper semicontinuity
of M - T(M,c) on G, yield, by (2.14), the continuity of the function
M4 — S(M5) = A. Since the mapping M§ — A from Q! onto £ is one-to-
one and both spaces Q! and £ are compact, the inverse mapping A — M§ is
also continuous. Thus, by Proposition 3.4, we have the following description
of extreme points.

PROPOSITION 4.1. Foranyc >0
extGl ={MS:A€€}.
The mapping A — M§ is a homeomorphism between £ and ext G1.

In attempting to visualize the extreme points of G we shall give some
examples.

1. Ay = {0}. Then Mg = by and (M} ) is the standard Gaussian
measure.












