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1. Several references to the little-known Moore metrization theorem
have appeared recently in [2], [3], and [4], the most recent being in the
important paper of Roy [6]. It appears that under certain general circum-
stances, this theorem is much more natural to apply than either the Nagata-
Smirnov or Bing metrization theorems. Since a direct proof of this result
is not explicitly available in the literature, we would like to present one
based on an early theorem of Alexandroff and Urysohn [1] and a recent
alternative proof of this theorem by Rolfsen [5].

2. Let S be a topological space and H a collection of subsets of S.
If A < 8, then St(4, H) means the union of all those members of H which
meet A. If ze8, then St(x, H) means St({z}, H). A development for
S is a countable family G,, G, ... of collections of open sets such that,
for each ¢, G; covers S, and if x« U, where U is open, there is an ¢ such
that zeSt(z, ;) < U.

A development G4, @,, ... for S is termed regular if, for each ¢, whenever
two members of G, , intersect, their union is a subset of some member
of G;. A development @,, G,, ... for S is termed neighborhood-star if for
each open set U and xeU, there exists an ¢ and a neighborhood N of
@ such that St(N,G;) < U.

THEOREM 1 (Alexandroff-Urysohn). 4 topological space is metrizable
of and only if it is Hausdorff and admits a regular development.

Rolfsen [5] was able to show that a topological space admits a regular
development if and only if it admits a neighborhood-star development.
Consequently, Theorem 1 above yields:

THEOREM 2. A topological space is metrizable if and only if it is
Hausdorff and admits a neighborhood-star development.

3. THEOREM 3 (Moore metrization theorem). A topological space S is
metrizable if and only if there exists a countable collection G, @,, ... such that
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(1) Each G; is an open cover of S.
(2) Given distinct points, x and y, in S, and any open set U, containing

x, there exists an i such that if V and W are elements of G;,xeV, and
VW09, then W < U and y¢ W.

Proof. Suppose 8 is metrizable, with metric d. For each positive
integer i, let @; = {S (x, 27¢*?) |z €8}, where S(z,r) means {y ¢S |d(z,y) < r}.
Now let « and y be distinct points of S, and let U be an open set containing x.
Let i, be such that d(x,y) > 27%. Let i, be such that S(x,27) c U.
Let ' = max{i,, 7;}. Consider the collection @,. If V and W belong
to Gy, xeV, and V n W+ @, then sup{d(a,b)|a,beV u W}< 2%, s0
that, for every ae W, d(a,x) < 27% <2 %. This means that W < U.
Moreover, since d(z,y) >2""1>2"" y¢ W.

Suppose now there exists a countable collection @,, @, ... satisfying
conditions (1) and (2) of the theorem. We will show that S is Hausdorff
and that the collection G, @G,,... is a neighborhood-star development
for 8. By Theorem 2, § will then be metrizable.

Let U be an open set and e U. Then there is an ¢ such that if ¥V and
W belong to @;, ¢V, and V "W # @, then W < U. Since G; covers
S, eV, for some V,e@;, and, by the above, St(V,,&) < U. Thus,
G,, G,, ... is a neighborhood-star development.

Now let # and y be distinct elements of 8. Then, for some ¢, condition
(2) is satisfied. Let V and W be elements of G; such that zeV and ye W.
Then V n W =@ and so 8 is Hausdorff.
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