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1. Introduction. Let 7' be a contractive linear operator on a sepa-
rable complex Hilbert space X. Such an operator is said to be completely
non-unttary if it has no non-trivial reducing subspace N such that the
restriction T'|N of T to N is unitary. It is known (see [7], Theorem I.3.2)
that for any contraction T' on X we can find a unique orthogonal decom-
position X = M @M, such that M and M, reduce T, T|M is unitary, and
T |M, is completely non-unitary. It is not excluded that M or M, is possibly
the subspace {0}. Furthermore, M is given by

M={&eX: |T"| = |lz| = |T*"|,n» =1,2,...}

and is called the unitary subspace of T. The restriction T'|M is called the
unitary part of T.

In the following, we describe explicitly the above decomposition for
the class of generalized Hankel operators.

2. Generalized Toeplitz and Hankel operators. We say that an iso-
metry S: X — X is a unilateral shift if there exists a subspace C in X for
which (870) | (8%0) for non-negative integers j # k and

X =@ 8"C.
n=0
It is not difficult to see that C is uniquely determined by 8, viz.,
C = (8X)*.
In what follows, we shall find it convenient to consider the minimal
unitary extension U of 8. Then U is a bilateral shift acting on a Hilbert
space Y containing X, and Y decomposes into the orthogonal direct sum

Y= ® U"C and VU|X =8.
That such a space Y exists is clear, since it can be constructed as
& direct sum of a countable number of copies of C indexed on the integers.
Equivalently, U and Y are obtained as the minimal unitary dilation of §
in the structure theory of Sz.-Nagy and Foiag§ [7], Chapter I.
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We now fix a unilateral shift S on the Hilbert space X and make the
following definitions.

Definitions. 1. A bounded operator T: X - X is Toeplitz if
S*T8 =T.

2. A bounded operator H: X — X is Hankel if HS = S*H.

3. A bounded operator L: Y — Y is Laurent if LU = UL.

These operators have previously been studied by Rosenblum [6]
and Page [4], and they are generalizations of the classical Toeplitz and
Hankel matrices T = (¢,_,) and H = (¢;44), j, % =0,1,2,..., acting
on %, In particular, we have the following two facts which, in this genera-
lized setting, have been observed by Page [4], Theorems 1 and 2:

1. A bounded operator T on X is Toeplitz if and only if there ewisis
a bounded Laurent operator Lon Y suchthat T = P _L|X, where P,: ¥ - X
8 the orthogonal projection. In this case, ||L|| = ||T||.

2. A bounded operator H on X is Hankel if and only if there i3 a bounded
operator J on Y satisfying U'J = JU such that H = P J|X. Also, J
can be chosen 8o that ||J|| = ||H]|.

The results above assert that every bounded Toeplitz operator is
obtained by projection onto X of an operator that commutes with U,
and that every bounded Hankel operator may be obtained by projection
onto X of an operator J satisfying U*J = J U. The latter result is an ana-
logue for generalized Hankel operators of a well-known theorem of
Nehari [3] giving criteria for a classical Hankel matrix to be a bounded
operator on 1%

In the generalized framework described above, we can give descrip-
tions of the unitary parts of Toeplitz and Hankel operators. In doing so,
we shall use the fact that the spaces X and Y are isometrically isomorphic
to certain function-space models obtained as follows.

Let m denote the normalized Lebesgue measure on [0, 27]. Then L%
denotes the Hilbert space of weakly measurable functions defined on
the unit circle, taking values in the Hilbert space C, and having square-
integrable norms. If (-, -> denotes the inner product in L} and (-, -) that
in C, then

2n
@,y = [ (0(e°), y(¢*)dm(6) for v,y e L.
0
A function z € L} has a Fourier expansion of the form

[+°]
\ 1 .
z(6) = Z ¢, ¢ with ¢, €0,
Nn=—00
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such that for every d € C we have the ordinary Fourier expansion

(@(e®), d) = 2 (c,, d)e™®.
n=—00"
The Hardy space Hy consists of those functions in L% whose Fourier
coefficients vanish for n < 0. The isometric isomorphism referred to
above is then given by the mapping

2 U"c, — Z e
from Y onto L} which takes X onto HZ. Under this correspondence,
the operator L on Y is unitarily equivalent to multiplication on L% by
a function f(¢*) € L*(B(C)), the algebra of essentially bounded functions
from the unit circle to the set B(C) of bounded operators on the Hilbert

space C.

3. Unitary parts. In previous work by the author (see [1] and [2]),
explicit descriptions have been given for the unitary parts of a classical
Hankel matrix and of a generalized Toeplitz operator. These results may
be summarized as follows:

1. Let H be a Hankel contraction on H*. Then a necessary and sufficient
condition for H to have a non-trivial unitary subspace M is that there exist
a complex constant k, |k| = 1, such that kH is real (hence, self-adjoint) and
that the s'ubspace

= {reH*: kHr = 2} ®{w e H*: [Hx = —ua}

satisfy M, +# {0} In such a case, M = M,.
2. Let T be a generalized Toeplitz contraction on the Hilbert space

X = @ S*C.
n=0
Then a necessary and sufficient condition for T to have a non-trivial
unitary subspace M 18 that there ewist a decomposition C = C,®C,, C, # {0},
Jor which
M=@8C and M= 8,0,
n=0 n=0
and that there exist a unitary operator Ry: Cy — C, such that
Tz = ) 8"Ryo, for o= ) Sc,e M.
n=0 n=0
We are now able to obtain criteria for the existence of a non-trivial
unitary part of a generalized Hankel contraction analogous to that indi-
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cated above for classical Hankel matrices. The proof of the previous
result uses the fact that if a Toeplitz contraction on H? has a non-triv-
ial unitary part, then it must be a unitary operator on all of H?, equal
to multiplication by a constant of modulus 1. Since a generalized Toeplitz
operator T on a Hilbert space X can have a non-trivial unitary subspace N,
which is properly contained in X with T'|N,, not necessarily multipli-
cation by a constant, we expect the self-adjoint operator ¥tH: H® — H*
to be replaced by a self-adjoint operator of the form Hﬁ; , acting on N,.
The next theorem shows that this is in fact the case.

Using the notation established above, for a Hankel operator H on

o0
H} (~ @ 8"C) we let the corresponding lifted operator J: L — L for
n=0

which ||J]| = |H|| and H = P_J|H be given by Jao = f(¢°)z(e~*) for
f € L®(B(0)).

THEOREM. Let H be a generalized Hamkel contraction on the Hilbert
space

X = ®8"C.
n=0

Then mecessary and sufficient conditions for H to have a mon-irivial

unitary subspace M are the following:
(i) There exist decompositions C = C,DC, and X = N,®N, such that

.No = @S”Go a'nld 'Nl = @Snol.
n=0 n=0
(ii) There exists a unitary operator K,: Cy— C, such that the corre-
sponding operator K, defined on N, by

£, (D) 8%e) = D 8" K,e,
n=0 n=0
commutes with 8| N,, and such that HK? is self-adjoint on M.
(iii) The subspace

My, = {weN,: Hf(::v =z} D {x € Ny: Hf("o'w = —u}

18 not the zero subspace.

In such a case, M = M,.

Proof. Suppose that H has a non-trivial unitary subspace M. Then
there exists some @ 7% 0 in X such that for H and its adjoint we have
|H"z| = |=|| = |[H*=®| for n =1,2,... Considering

® = Z”'S"o,,

n=0
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a8

©
o 6‘9) — 2 ¢, e

n=0

in Hy with H given by Ho = P_f(é*)o(e~*), f e L”(B(0)), we get for
n=1

lell = | Hall = |P,f(e®)@(e™)I < If(®)a(e™)] < llw(e ).
This implies
P, f(e®)@(e™*) = f(e*)u(e™*),
so that Hx = f(e)z(e™*) e HE.
Taking now n = 2, we get
lell = IEall = |Hf(e")m(e™™)| = IP,f(e“)f(e*)m(e")
< If(€*)f (6™ ()| < lw(e”)l],
so that
H'z = f(e")f(e7*)w(e") = To,
where T is the generalized Toeplitz operator with symbol y(e") =
f(e°)f(e7*) e L*(B(0)).
Continuing, for » = 0,1, 2, ... we obtain
(1) H**g(e") = f(6°)[f(e”)f(e ) "o (e™*),
(2) H*"5(6") = [f(e”)f(e~*)]"w(e").
Then (2) and its analogue for H* imply that « is in the unitary sub-

space N, of the Toeplitz operator T. Therefore, by the above-mentioned
result, we get the decompositions

C=0®0,, N,= @ 8*Cy, N1=N6L = @ 8"C,.

n=0 B=0

This gives the decomposition required by (i).

Also, by the previous result for Toeplitz operators there exists a unit-
ary operator R,: C,— C, such that

1'( S:S”o,,) - S‘S"Roo,,.

n=0 n=0

If the operator R, has a spectral representation

2n
R, = [ ¢*am,,
0
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then we let K,: C, — C, be the unitary operator given by
2r
K, = [ ¢**dE,.
0
We make the natural extension of K, to an operator f(o on

= ® 8°C,

n=0

fI., (2”1 S”c,,) = Z.OS"KOG,,

n=0 n=0

by defining

Both K, and K% commute with any operator that commutes with T

(or T*). (For K? and T*, we use a well-known theorem of Fuglede (see [5],
Theorem 1.6.1) which states that if ¥V is a bounded normal operator and B
is a bounded operator such that NB = BN, then N*B = BN"*.) In par-

ticular, SK, = K,8 and HK: = K'H, since
e‘ﬂ[f(eiﬂ)f(e—iO)] — [f(eiO)f(e—iO)]aio and HT — H3 — TH.

Furl;hermore, it is easy to see that the unitary subspace M of H
reduces HK" and that on this subspace we have H* =T = K2 Mul-
tiplying on the left by K? and on the right by H*, we obtain K*H = KoH*
and hence HK" K(,H which shows that the bounded operator HK‘
is self-adjoint on M. This gives (ii).

Finally, the direct sum of the eigenspaces of Hﬁ: for the eigenvalues
A = +1, given by M,, must be equal to the unitary subspace M of H
since, clearly, M, < M and, if » € M, then

(HK?)w = H* K0 = TT*z = o,
giving
o =} (e+HK ) +}(e— HK:2) e M,.
Since these arguments are reversible, conditions (i)-(iii) give both

necessary and sufficient conditions for H to have a mnon-trivial unitary
subspace. The proof is then complete.

A simple, but illustrative, example of the decomposition above is
given by taking X = H*@H? with H: X - X defined by H = H ®H,,
where H,: H*—~ H® is the Hankel operator with symbol f(¢®) = ¢*
and H,: H*— H? is a completely non-unitary Hankel operator. In thls
case, H has a non-trivial unitary subspace given by

= {8(¢") = (2, 0) + (#,, 0)€*: @, #, € C}
={weH*®0): Hr = 2} D{r e H*P(0): Ho = —a}.
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It is the assertion of the theorem above that all abstract Hankel

contractions decompose in a similar way.
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