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1. Introduction. Let T be a non-empty set and # a family of subsets
of T. A function F: T — 2%, where 2X denotes the space of non-empty
closed subsets of a metric space X, is said to be weakly .fF-measurable
(S-measurable) it {t: F(1)nV +# B} e S for every open (closed) set V in X.
If Y is a metric space, we say that a function f: T — Y is Sf-measurable
if f~}(V)es for every open set ¥V in Y. A function f: T > X is said
to be a selector for F: T — 2% if f(t) e F(t) for each t e T.

In [1], Castaing essentially established the following

TEEOREM 1. Leét (T, .f) be a measurable space. Suppose F: T — 2%,
where X t8 a Polish space. Then the following conditions are equivalent:

(i) I is weakly Sf-measurable,

(ii) there exist S-measurable fumctions g,: T — X, i >1, such that
F(t) =ecl ({g;(t): > 1}) for each t € T, where cl denotes the closure operator.

Actually, Castaing proved Theorem 1 under the additional assump-
tions that T is a locally compact space and .# is the o-tield of u-meas-
urable sets for some Radon measure u, and Himmelberg [2] observed
that the result holds for any measurable space (T, .f), which is just the
version we have formulated in Theorem 1.

The present article arose from our efforts to formulate Theorem 1
in the same framework as the one in which the selection theorem of
Kuratowski and Ryll-Nardzewski [56] is formulated, or the even more
general framework of [6]. Indeed, the present article can be viewed a8
a sequel to [6].

Our main results are reported in Section 2. Section 3 contains an
application of Theorem 1. We conclude with an example in Section 4.

2. Main results. We first recall some definitions and notation
from [6].

In what follows we identify cardinals with initial ordinals. ¢, § with
or without primes denote ordinals, while A denotes an infinite cardinal.
A* denotes the successor cardinal to A.
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Let # be a family of subsets of a set 7. We say that S is A-additive
(A-multiplicative) if, whenever {4,: a < f} = S and B < 4,
U4d.es (N 4,€5).
a<p a<p
Denote by #, the smallest 1-additive family containing #. We some-
times write #, for #, . We denote by #° the family of subsets of 7' whose
complements belong to . Say that # is a A-fieldif O e f, J is 1-additive
and closed under complementation. Thus an N,-field is just a field, while
an R,-field is a o-field.
We say that the family # satisfies the A-reduction principle if, whenever
{4,:a < f} =S and B < A, there exist sets B,, a < f, such that
(a) (Va < f) (B, €9),
(b) (Va < )(B, < 4,),
(¢) (Va,a' < B)(a #a' = B,NB, =0),
(d) U B, = U A,.

a<lp

We shall need the following result of Kuratowski [4]:

LEMMA. If S i8 a A-field of subsets of T, then S+ satisfies the At-re-
duction principle.

We are now in a position to state our main results.

THEOREM 2. Let @ be a family of subsets of a set T such that @, T € P,
D i3 At-additive and A-multiplicative. Then the following conditions are
equivalent:

(a) @ = L+ for some A-field & of subsets of T.

(b) If X i8 a complete metric space of topological weight <A and F:T—>2%
is weakly D-measurable, then there exist D-measuradble functions f,: T — X,
a < A, such that

(Ve T)(F(t) = cl({f.(): a< 2})).

(¢) If Z = {0,1} with the discrete topology and F: T — 2% is weakly
&-measurable, then there exist PD-measurable functions f,: T —Z, a < A,
such that

(Ve T)(F(t) = el ({fu(t): a< A})).

Proof. (a) = (b). Fix a metric d on X. It suffices to show that for
every ¢ > 0 there exist #-measurable selectors g,: T — X for F such that
{9.(t): @ < A} is an e-net in F(t) for each ¢t € T. Once this is done, we can
put together the functions ¢7, a <1, n > 1, to get the desired result,
where g7, a < A, are P-measurable selectors for F' such that {g}(t): a < 4}
is @ (1/n)-net in F(t) for each t e T.

Let e > 0."8ince the topological weight of X is < 4, it is possible to cover
X by open spheres 8,, a < 4, of radius ¢/2. Put T, = {t: F($)n 8, # 9},
a< A. Note that T, € .
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Fix a &-measurable selector h: T — X for F. The existence of such
a selector is ensured by Theorem 1 in [6], as & satisfies the A*-reduction
principle (Lemma). Suppose that T, #@. Define F,:T,—»>2%X by
F.(t) =c(F(#)N8S,). Put &, = {4ANT,: A e §}. Note that &, < &. Now
if V is open in X, then

{teT,: F,})nV #£0} ={teT: F)nV NS, #3} e D,

so that F, is weakly @ -measurable on 7',. Since @ satisfies the A*-reduction
principle, so does @,. We can therefore appeal once again to Theorem 1
in [6] to get a @ ,-measurable selector h,: T, > X for F,. Since T, e &
= Z,+, there exist sets T,; € & such that

T a = U T ap*

p<i

For f < A, define h,s: T — X as follows:

B _{ha on T,
“ o onT-T,.

If T, =0, set h,; = h for every f < A. In either case, as is easy to
check, the functions A, < 4, are P-measurable selectors for 7.

To conclude the proof we claim that, for each ¢t € T', {h,(?): o, f < 1}
is an ¢-net in F (). For if # € F(t), we can find an a such that « € 8,, hence
F(t)n8, #0 and t e T,. So there is a § such that ¢t € T,;. It follows that
hop(t) = hy(t) € F,(t) < cl(8,). Consequently, d(z, hy,(t) < e.

(b) = (¢). This implication is obvious.

(c) = (a). Put & = DdNP° It is easy to see that & is a A-field of
subsets of T. We now claim that & = #;,. The inclusion Z;+ < @ is
obvious. For the reverse inclusion, let A € @ and suppose @ # A # T.
Let Z = {0, 1} be equipped with the discrete topology. Define F': T — 2%
as follows:

{0, 1} ifted,
@) = {{1} ifteT—A.

It is easy to check that F' is weakly ®-measurable. It now follows,
by virtue of condition (c), that there exist @-measurable functions
f.: T—> X, a < A such that '

F(@t) = {f.(t): a< i} for each teT.
Now verify that f7'({0}) e 2PN P°® = £ for each a < 1 and
4 = Hf:’({o}),

8o that 4 e Z;+.
This completes the proof of Theorem 2.



298 A. MAITRA AND B. V. RAO

THEOREM 3. Let & be a A-field of subsets of a set T and let X be a com-
plete melrio space of topological weight < A. Suppose F: T — 2%, Then the
following conditions are equivalent:

(i) 7 i3 weakly Z,+-measurable,

(ii) there ewist &,+-measurable functions f,: T — X, a < A, such that

(Ve e T)(P(t) = el({fu(t): a < 2})).

Proof. (i) = (ii) is just the implication (a) = (b) of Theorem 2.
For (ii) = (i), let ¥V be an open set in X. Then

{t: FA)nV # 09} = L)lf;’(V) €L+,

so that F is weakly .#,+-measurable.

A generalization of the selection theorem of Kuratowski and Ryll-
-Nardzewski [5] is obtained by specializing Theorem 3 to the case 1 = N,.
By further specializing Theorem 3 to the case where .# is a o-field, we
recover (Castaing’s) Theorem 1. Furthermore, in the case A = ¥,, Theo-
rem 2 shows that Castaing type theorems do not hold for structures on 7'
more general than #,, where Z is a field, unless further conditions are
imposed on T.

Theorem 3 yields a characterization of multifunctions of class a~ as
follows. Let T and X be metric spaces. Recall that a function F: T — 2%
is said to be of class a™ if {t: F(1)nV +# B} is a Borel set in T of additive
class a for each open set ¥V in X. We say that a function f: 7' X is
a Borel function of class a if f~!(V)is a Borel set in T' of additive class a
for each open set V in X.

THEOREM 4. Let T be a metric space and let X be a Polish space.
Suppose F: T —2% and a > 0. Then the following conditions are equi-
valent:

(i) F 48 of class a™,

(ii) there exist functions f;: T — X, © > 1, such that f; i8 a Borel function
of class a and

(Ve e T)(F(t) = d({fi(t): i>1})).

Proof. The result is an immediate consequence of Theorem 3 by
taking 4 = N, and % to be the family of Borel subsets of 7' which are
simultaneously of additive class a and multiplicative class a.

Theorem 4 is also true for a = 0 if we assume that 7' is a 0-dimensional
separable metric space.

3. An application. In this section we use Castaing’s theorem to
give a quick proof of a result which is useful in dynamic programming
and control theory. Variants of the result abound in the literature. The
reader is referred to the survey article [7] for a bibliography.
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We fix some notation first. We use ¢(X) to denote the space of non-
-empty compact subsets of a metric space X. If F': T — € (X), we denote
the set {(f, ): # € F(t)} by GrF. The Borel o-field of the metric space
X is denoted by #x. If (7,.f) is a measurable space and X a metric
space, J @ £x is the product of the o-fields # and #x. Finally,it ¥ = T x X,
S ® Bx|E denotes the trace of the o-field S @ #x on E.

THEOREM 5. Suppose (T, .f) is a measurable space, F: T — €(X) i
weakly measurable (equivalently, measurable), where X is a separable metric
space. Let u: GrF — (—oo0, o©) be S Q@ Bx|Gr F-measurable and assume
moreover that u(t, -) 18 continuous on F (t) for eacht € T. Let v: T — (— oo, o)
be defined by

v(t) = sup u(i, z).
zeF(t)

Then v i8 S-measurable and there is an S-measurable selector f: T - X
Jor F such that v(t) = u(t, f(t)) for each teT.

Proof. A moment’s reflection shows that we may consider X to
be a Polish space (or even a compact metric space) without loss of
generality. With this assumption made, we can invoke (Castaing’s)
Theorem 1 to get #-measurable functions g,: T — X, ¢ > 1, such that
F(t) = cl({g;(t): ¢ > 1}) for each teT. It follows immediately that

o(f) = supw(t, g;(t)) for each teT.
{

Hence v is S-measurable.
Set G(t) = {wxeF(t): u(t,z) =>v(t)}, tel. Plainly, G: T - ¥¢(X).
We show next that @G is f-measurable. Let then O be a closed set in X
and let
C,={weX: dx,0)<1/n}, n>1,

where d is a metric on X. Note that
¢ =N¢C,.

na1
Check now that:

{t: G()nC # 0} = ag{t: u(t, g4(t)) > v(t)—1/n and g,(t) € 0,}.

It follows that @G is #-measurable.
To complete the proof of Theorem b5, it suffices now to get an
S-measurable selector f: T — X for G.

4. Example. Himmelberg and Van Vleck ([3], Theorem 1’ (i)) and
also Wagner ([7], Theorem 4.2 (e)) assert that in Theorem 1 the condition
that ¥ be weakly .f-measurable can be replaced by the following one:

(») {t: F(I)n K # O} €S for each compact subset K of X.
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Here is an example showing this to be false.

Let T = X be the space of irrationals. Let # be the o-field on T
generated by the compact subsets of T'. Define F': T — ¢(X) by F(t) = {t}.
It is easy to see that F satisfies condition (*). Now the only selector for
F is the function f(t) = ¢, t € T. But, as is well known, f is not #-meas-
urable. In other words, F does not admit an Sf-measurable selector.
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