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CONTINUA WITH A CONNECTED SET OF POINTS
OF INDECOMPOSABILITY

BY

A.EMERYK aAND A. SZYMANSKI (KATOWICE)

In [2] Proffitt introduced and studied the set E,, of points of inde-
composability for an arbitrary continuum M: a point p belongs to E,,
if there exists no decomposition of M into proper subcontinua K and L
such that p e K nL. The aim of this paper is to study how the continuum M
is built if F,, is a proper and connected subset of M. We show that, in
this case, M is a union of two proper subcontinua K and L such that K
contains E,,, L is indecomposable and disjoint with ¥,;, and each compo-
sant of L intersects K nL. Thus, identifying K to a single point we get
the quotient space M /K which is an indecomposable continuum having
precisely one composant. The existence of a Hausdorff continuum M for
which F, is a proper and connected subset of M is an open question.

1. Preliminaries. Let us note some facts which will be used in the
sequel.

1.1. TEEOREM (Proffitt [2]). If T is a component of E,,, then either T
18 closed or cl1T is indecomposable.

1.2. COROLLARY. If E,, i8 connected, then E, 18 closed or clE,, is
indecomposable.

1.3. THEOREM (Proffitt [2]). If M is a continuum such that E,, has
two components, then Ey, has only two components and no proper subcon-
tinuum of M intersects both of them.

1.4. THEOREM (Kuratowski [1], Theorem 1, p. 131). Let C be a
connected subset of a connected space X. If A and B are two separated sets
such that X\C = AUB, then the sets CUA and CUB are connected. If, in
addition, C is closed, then so are CUA and CUB.

2. Continua M for which E;; are non-empty and connected. Through-
out this section, E,; will be a non-empty, connected, proper subset of
a continuum M.
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2.1. LeMMA. If K and L are proper subcontinua such that

EuL=M and KnEy, #0,

then LAE, = 0.

Proof. K and L are proper subcontinua of M, hence KnE, and
LnE,; are closed subsets of E,, such that

(KnEpy)U(LNnE,y) = Ey and (KnEy)n(LnEy)= KnLnE, =0.

Since E,, is connected and KnE,, # @, we have LnE,, = @.
2.2. LEMMA. If K i3 a subcontinuum of M such that

KnBEy #0 and K\E, #0,
then there exists a subcontinuum L of M such that
LnEy =0 and KOUL =M.

Proof. Let p e K\E,,. There exist proper subcontinua K’ and L
such that K'UL = M and p € K'nL. It follows from 2.1 that

KnEBy =0 or LnEy, =0.

Assume that LnE, = @. We prove that KUL = M. In fact, KUL
is a continuum such that p e KnL, and the assumption KUL # M
implies that -

(KUL)UK' =M and Eyn(KUL)nK’' #0

(since B, < K'), a contradiction. Hence K UL = M.
2.3. COROLLARY. If KnE, # O, then Eyy ¢ K or K <« Ey,.

2.4. LEMMA. E,, is a subset of M with a void interior.

Proof. Suppose, on the contrary, that intE,, = 4. Take an open
subset U of M satisfying ¢l U < int E,,. Since F,, is a proper subset of M,
there are two proper subcontinua K and L of M such that

KuL =M and KnL #%0.

Assume that KnE, #* 3. By Lemma 2.1, LnE, =@, so that
B, = K. The component C of L in M\ U is a proper subcontinuum of M
which intersects ¢l U. Therefore, we have two proper subcontinua C and K
of M such that

M =CuUK and O #cdUnCnK c E,,

which is a contradiction.
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2.5. THEOREM. E,, is a closed subset of M iff E, is nowhere dense;
otherwise, ¢l E,, is indecomposable.

Proof. By Corollary 1.2 it suffices to prove that if E,, is nowhere
dense, then F,, is closed. Suppose, on the contrary, that there exists
a p € clE,\FE, . Take proper subcontinua K and L such that KUL = M
and p e KnL. Assume that LnE, =@ (by Lemma 2.1). The set E,
is nowhere dense and p € LneclE,, hence LuclE,, is a proper subcon-
tinuum of M. Take, according to Lemma 2.2, a proper subcontinuum K’
of M such that

K'U(clE,UL) = M.
By 2.1, K’OEJII = . But LnEM = g, SO
@ + By ¢ MN(K'UL),

and M\(K'UL) is open. However, M\(K'UL) < cl¥E,, which contra-
dicts the fact that E,, is nowhere dense.

Define ° to be the family of all proper subcontinua K of M with
KnE, # 9. Define # to be the family of all proper subcontinua L of M

which satisfy LnE,, = @ and for which there exists a K € )¢ such that
LUK = M.

2.6. THEOREM. If L € &, then M\ L 1is connected.

Proof. Suppose that M\ L is not connected. Let C be the compo-
nent of M\ L containing EF,,. We have

LnelC ££606 and clC ## M\L.

Therefore, LueclC is a proper subcontinuum of M and contains E,,.
But L €%, hence there exists another proper subcontinuum K of M,
which contains F,, and is such that

M = KUL = Ku(Luel(Q);
a contradiction.

2.7, THEOREM. If L €% and LnclEy =@, then N = cl(M\L) s
a continuum such that Ey is a proper subset of N which contains the set
EyU(LAN).

Proof. In virtue of 2.6, N is a continuum. Obviously, N is a proper
subcontinuum of M and LUN = M. Now, E,, is a proper subset of N.
To see this we take an open set U in M which contains ¢l E,; and is such
that ¢l U <« M\ L. Let C be the component of U containing ¥,,. Then ¢lC
is a continuum which contains ¥,, and differs from ¥,,. Obviously,
olC is contained in ¢l U. In virtue of 2.3, there exists an L, € £ such that

LyuelC =M and MN\L, ¢ M\L.
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The set M \ L, is open in N (being open in M) and, therefore, c1(M\ L,)
is a proper subcontinuum of N, contained in ¢l U and satisfying
inthl(M\Ll) # 0.

So, N contains a proper subcontinuum ¢lC which has a non-empty
interior. Hence N is decomposable and, therefore, £, # N.

Now, let A and B be proper subcontinua of N covering N. Let p € AnB
(i.e. p is an arbitrary point of N\ Ey). Since LnN # @, we have

AnL #@ or BnL #0,

say A intersects L. Assume that pe ¥y, ULNN.If peE,,, then LUA and N
are proper subcontinua of M covering M, and p € Nn(LuUAd); a contra-
diction. If p € LnN, then LUA and LUB are proper subcontinua of M.
Since E,, =« AUB, then E,, intersects A or E,, intersects B, say E,, nB # 9.
Hence LUB and N are proper subcontinua of M such that

LUBUN =M and Eyun(LUB)NN #£0.
Thus p ¢ EyV(LnN), which means that
N\Ey <« N\E,U(LnN), ie. Ey U(LnN)c Ey.

2.8. THEOREM. If K e X and K ¢ Ey, then M\K 18 connected and
cl(M\K) € 2.

Proof. It follows from Corollary 2.3 that E,, <« K. If M\ K is not
connected, then by Theorem 1.4 there are two continua Kud and KuUB
such that

(KVA)U(KUB) =M and E, c (KuAd)n(KUB),
where A and B are separated subsets of M\ K, a contradiction.
2.9. TBEOREM. Let K e X'. If L €% is such that
KuL =M, clint(KnL) =KnL and int(KnLl) #9,
then the set KnL i8 an irreducible continuum between LAcl(M\L) and

Knecl(M\K).

Proof. Suppose that KnL = AuB, where A and B are separated
sets. Since KNnL = K\(M\L), and M\L, in virtue of Theorem 2.6,
is connected, then (M\L)UA and (M\L)UB are connected, according
to Theorem 1.4. Since clint(KnL) = KnL,

0, = cl[(M\L)UA] and O, = cl[(M\L)UB]

are proper subcontinua of K. One of them, say C,, must intersect the
continuum c¢l(M \ K). This produces a contradiction: K and C,uvcl(M\ K)
are two proper subcontinua of M which cover M and satisfy

Ey < EA[C,uel(M\EK)].
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Now let C be a subecontinuum of K nL such that

Lnel(MNL)cC and Knecl(M\K)cC.

Then
D = cl(M\L)UCUo(M\K)

is a subcontinuum of M such that DUK = M and E,, <« DnK. So we
have D = M and, therefore,

¢ > M\[|(M\L)Uel(M\EK)] = M\ c[(M\L)U(M\K)]
= M\ cl(M\EnL) = int(EnL).

Hence KNnL = clint(KnL) = C, so that ¢ = KnL.

2.10. THEOREM. If L and L, are in &, then either (L\L,)V(L,\L)
18 nowhere dense or L < intL,, or L, < intL.
If K and K, are in X'y K & E,; and K, & E,, then either (K\K,)U
U(K,;\K) is nowhere dense or K c intK,, or K, < int K.
Proof. Suppose that (L,\L)U(L\L,) is not a nowhere dense subset
of M. Then
int(L,\L) #@ or int(L\L,) #9,

say int(L,\L) # @. Now we show that L < int L,. In fact, if not, then
a contradiction is obtained, since then

Lacl(MN\L,) # 9@,

and Luocl(M\L,) is a proper subcontinuum of M (because Lucl(M\L,)
c M\int(L,\L)) such that

(M\L)ULUCl(M\L,) = M and E, c [Luc(M\L,)]ncl(M\L).

If K and K, are in X', K ¢ E, and K, ¢ E,,, then cl(M\K) and
cl(M\K,) are in Z according to 2.8. By the previous case we have the
required relations for K and K,.

Let o' be the/fanﬁly of all those elements of ¢ which are not con-
tained in E,. We write K AK' iff (K\K')U(K’'\K) is nowhere dense.
The relation 4 is an equivalence in ™.

2.11. LEMMA. Each equivalence class of the relation A can be repre-
sented by some regularly closed element from ™.

Proof. Take an arbitrary equivalence class of the relation 4 and
an element K in it. Then, by 2.8, cl(M \ K) is in % and, therefore, according
to 2.6, c1[M\cl(M\K)] is in 2¢"’. Obviously, cl[ M \e¢cl(M\ K)] is regularly
closed and K Adcl[M\cl(M\K)].

Now, let # be the family of all regularly closed elements from .
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2.12. LEMMA. The set | {int K: K € &} is a proper subset of M.

Proof. If not, then [ {int K: K € #} covers M. Since M is compact,
there are K,, K,, ..., K, in # such that -

intK,v...vintK, = M.
By 2.10 there exists a K; € # such that

intK,v...vintK, < K,,
a contradiction.
2.13. THEOREM. There exists a K,c # such that K < K, for each K
n A.
Proof. The set cl|J {K: K € #} is a subcontinuum of M (each K

in # contains E,). It is a proper subcontinuum of M. If not, then, by 2.10
and 2.12, | J {intK: K € #} is a dense and proper subset of M. Let

p¢ U{intK: K e #}.

Since p ¢ E,,, there exists a K’ € & such that p € K'. Since | {int K:
K € #} is dense in M, and M\ K’ is not empty and open, then there exists
a K in # such that

int Kn(M\K') 0.

By 2.10, K’ c intK, so p eintK; a contradiction. Thus el {K:
K € #} is a proper subcontinuum of M. Take K, to be this regularly closed
element of ¢’ which represents the equivalence class of the elements
cl U {K: K € #}, and whose existence follows from Lemma 2.11. Obvi-
ously, K, is the desired element from £.

2.14. THEOREM. Let K, be the maximal element of #. Then cl(M\K,)
is an indecomposable continwum such that the umion of all composants of
points from K nel(M\K,) is the whole cl(M\K,).

Proof. Suppose that cl(M\K,) is decomposable into two proper
subcontinua 4 and B. Then one of them, say A, must intersect K,. The
set cl(M\ K,) is a regular-closed subset of M such that

mt[(KyUA)\NK,] =intd # 0.

But this contradicts the definition of K,, since, in virtue of 2.11,
there exists a regularly closed element in o’ which represents the equiv-
alence class of K,UA, and which is not contained in K,. Thus cl( M\ K,)
is indecomposable.

To prove the second part of the assertion take an arbitrary point p
in M\K,. Since p ¢ E,,, there exists a K € 2" such that p € K. In virtue
of 2.10, there is K 4 K, and, therefore, K, = K, K, being regularly closed.
Now, if we take the component of p in K nel(M\K,), then it must, obvi-
ously, intersects the set FrK, = K,ncl(M\K,).
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3. Main Theorem.

THEOREM. There exists a continuum which has a connected proper and
non-empty set K, if and only if there exists an indecomposable continuum
with one composant.

Proof. Let M be a continuum which has a connected proper and
non-empty set E,,. Let K, be a continuum defined in Theorem 2.13.
Let Y be a decomposition of M consisting of the set y, = K, and single
points of M\ K,. Let ¢ be the quotient map and M’ = ¢(M). To prove
that M’ is an indecomposable continuum suppose, on the contrary, that
M’ = KUL, where K and L are proper subcontinua of M’. Since ¢ is
monotone, we get

M = ¢ (K)ug (L),

where ¢! (K) and ¢ '(L) are proper subcontinua. Since
¢ (K)nKy, #9@ and ¢ '(L)nK,#0

(otherwise, if ¢~ '(K)nK, = @, then ¢~ '(K) would be a proper subconti-
nuum of the indecomposable continuum cl(M\K,) and there would be
intq~'(K) # 9; a contradiction), we infer that

[Kovg (K)V[K, Vg (L)] = M
and
Ey c [Kyuqg ' (K)1n[K,ug ' (L)],

where K,uq™'(K) and K,Uq'(L) are proper subcontinua of M; a contra-
diction. We infer from 2.14 that there is only one composant in M’.

On the other hand, let K be an indecomposable continuum with one
composant. Let M be the result of sticking together the arc I = [0, 1]
with K: by sticking, namely, the end 1 of I with an arbitrary point ¢
of K. Let us see that E, consists of only one point, namely, the end 0
of I. Clearly, no other point of I can be in E,,. Also points of K ocannot
be in E,,, for if p is a point of K, then p can be joined with g (¢ = 1)
by means of a proper subcontinuum K’ of K, and we get a decomposition
of M into IVK' and K, proper subcontinua of M, having p in the inter-
section.
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