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ON PRE-REFLEXIVE ALGEBRAS
AND PRE-REFLEXIVE OPERATORS

BY
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Introduction. Let H denote an infinite-dimensional separable complex
Hilbert space and let #(H) denote the set of all bounded operators on H. Let
U be a weakly closed subalgebra of #(H) containing identity. Let

@* = (4% Ac@).

Let Lat% denote.the set of all closed linear subspaces invariant under each
element of %. We identify a closed linear subspace with the corresponding
(orthogonal) projection on it. With this identification, Lat% is the set of
projections P on H such that the range of P is invariant under each element of
U. Let (Lat%) denote the commutant of Lat#, i.e., the set of all operators
commuting with each projection in Lat #. Aecording to [1], p. 478, % i is said to
be pre-reflexive if

WU AU* = (Lat@).

In this paper we discuss some -basic algebraic properties of pre-reflexive
operator algebras. Motivated by the concept of reflexive operators [3] we
introduce here the notion of pre-reflexive operators and prove some of its
properties. We also discuss these operators on finite-dimensional spaces.

Throughout the paper, unless otherwise stateg, H stands for an in-
finite-dimensional separable complex Hilbert space. For a subalgebra # of
#(H), by AlgLat% we mean the following

AlgLat% = {T: Te#(H) such that T(M) = M for each MeLat%}.

It is clearly a weakly closed subalgebra of #(H). For any operator T on H, </,
denotes the weakly closed algebra generated by T and the identity operator
I on H. '

* Support of this research work from U.G.C. via Research Grant No. F-25-3(12373)/82
(SR-I) is gratefully acknowledged.
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The paper is divided into three sections. In Section 1, some properties of
pre-reflexive operator algebras are obtained. Pre-reflexive operators are in-
troduced and studied in Section 2. In Section 3, pre-reflexive operators on
finite-dimensional spaces are discussed.

1. For a subalgebra % of #(H) it is easily seen that
UNU* < (Lat%).
Hence % is pre-reflexive if and only if
(Lat%) < #U nU*.
Also by [1], p. 478, (Lat%) is the diagonal of the algebra AlgLat%, ie.,
(Lat%) = (Alg Lat %) n (Alg Lat %)*.
Hence, in view of this equality, an algebra is pre-reflexive iff
(1) UNU* = (Alg Lat¥) n(Alg Lat %)*.

Hence % is pre-reflexive if it has the same diagonal as Alg Lat %. We begin our
task by observing that if % is a reflexive operator algebra, i.e., if # = Alg Lat
(see [9]), then (1) holds. Hence # is pre-reflexive. The converse, however, is not
true (as is shown in [1], p. 504), which gives an example of a weakly closed
operator algebra which contains an m.a.s.a., and hence is pre-reflexive ([10],
Corollary 2) but is not reflexive.- Since

Lat%* = {I-P: PeLat%},

it follows that (Lat %) = (Lat #*), so %* is pre-reflexive iff % has this property.
In addition, we have the following

1.1. THEOREM. Any operator algebra unitarily equivalent to a pre-reflexive
operator algebra is pre-reflexive.

Proof. Let % be a pre-reflexive operator algebra. Let S be a unitary
operator. Let

¥V = SUS* = {SAS*: AeU}
be the operator algebra unitarily equivalent to %. It is sufficient to show that
(Lat¥)y < ¥ nv™*.
Let Te(Lat¥?) and let MeLat%. Then A(M) = M for each A in %. Hence
(SAS*)(S(M)) = S(M).

Therefore S(M)eLat¥", and hence S(M) reduces T since T is in (Lat ¥’y by
assumption. This gives

S(M)eLat T n Lat T*,
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which further yields

T(SM)<=S(M) and T*(S(M)) < S(M).
Therefore

S*TSYM)=M and (S*T*S)(M)< M.

Thus Lat% < LatS*TS and Lat# < LatS*T*S, which is equivalent to
saying that S* TS and S* T*S both belong to Alg Lat %. By taking adjoints we
obtain

S*TSe(AlgLat¥)n(Alg Lat ¥)* = % nU*
by hypothesis. Therefore
TeS(¥ N U*)S* = (SUS*) N (SU*S*)
= (SUS*) N\ (SUS*)* =V nV*.
Thus the result follows.

1.2. THEOREM. If U, and 4, are pre-reflexive. operator algebras, then
U DY, is also pre-reflexive.
Proof. Let

Be[Alg Lat(%, @ %,)] n [Alg Lat(%, ® %,)]*.
Then
BeAlgLat(#%, ®%,) and B*eAlglLat(% ®%),
which gives
Lat(%, @®%)< LatB and Lat(% ®%,) < Lat B*.

Since {0} ®H and H@® {0} are in Lat(% @%,), and hence in Lat B, we have
B = B, ® B,, where

Lat%, < LatB, and Lat% < LatB,.

This implies that
B,eAlglat#, and B,eAlglat4%,.
Also then
 Lat(®,®%,) < Lat B* = Lat(B, ® B,)* = Lat(B! @ BY).
This further implies that
B,e(AlgLat%,)* and B,e(AlgLat%,)*.

Hence

B, e(Alg Lat%,) n(Alg Lat %))* = % nU%,

B, e(Alg Lat%,) n (Alg Lat #,)* = @, N 4%,

9 — Colloquium Mathematicum LVII. 2
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as %, and %, are both pre-reflexive. By taking the direct sum we obtain
B = Bl @Bze(%l N q’r)@(%} N %;),
ie.,
Be(# @U,) N (U DU)*.

Therefore %, @, is pre-reflexive.

On the same lines one can prove that the direct sum of any number of
pre-reflexive algebras is pre-reflexive.

1.3. Remark. If %, and %, are operator algebras such that %, @ %, is
pre-reflexive and if, in addition,

Lat(%, @ %,) = Lat %, @ Lat %,

then %, and %, are both pre-reflexive.
For, pre-reflexivity of %, @4, implies that

(% D) N (U DW)* = [Lat(% ®W)] = (Lat ) ©(Lat ).
Hence
U Ut =(Lat4) and U NU%=(Latd).

Therefore %, and %, are both pre-reflexive.
We have used here the fact that if 4, and 4, are operator algebras
satisfying
Lat(% ®%,) = Lat %, @ Lat 4,,
then

Lat(#, ®%) = (Lat4,) @ (Lat %Y.

We postpone the proof of this observation to Section 3. In fact, the proof is
given there for operators. For algebras, the proof follows the same lines. It can
also be seen that these results can be easily extended to a finite collection of
algebras.

14. Remark. If % is a pre-reflexive algebra and #™ is the algebra of all
operators A™(= ) @ A, where A, = A for all i) with Ae#, then #™ is

i=1
pre-reflexive.

For, if
BeAlg Lat %™  (Alg Lat %™)*,

ie., if
Lat#™ < LatB and Lat#™ < Lat B*,
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then Bis of the form ) @ B, with Lat# < Lat B; and Lat % < Lat B for each
i=1

i. This in turn implies that for each i
B;e(Alg Lat %) n(Alg Lat %)* = % N ¥*,

as % is pre-reflexive. Thus we need only to show that all B, are equal. This
follows readily as the ™-invariant subspace [(x, x,..., x): x€ H] is in Lat B,
and therefore B;x = B;x for all xeH and for every i and j.

1.5. Remark. We can also construct an operator algebra on H® H
which is not pre-reflexive in the following way.
Let % denote the algebra of all operators on H@®H of the form

o ]

AlgLat¥ = {[: CB] A, B, CeQ(H)}.

with A, Be #(H). Then

Also then
A O
* _ . .
U {[B A]' A, Bew(H)},
which gives
A0
(Alg Lat%)* = {[ ]: A, B, Ce@(H)}.
B C
Then
A O
.
wnae = {4 O] acan)
and
A 0
(Alg Lat %) n (Alg Lat #)* = {[O C]: A, CeQ(H)}.
Hence

U NU* # (Alg Lat %) N (Alg Lat &)*. .

Therefore % is not pre-reflexive.

For the space H the tensor product of H with itself, denoted by H® H, is
the space

Y @H, with H =H for all n.
n=1
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This definition is a particular instance of much more general concepts of tensor
product (cf. [6]). If % is a weakly closed subalgebra of #(H), then the tensor
product of # and #(H), denoted by # ® #(H), is the set of all operators on
H®H of the form

All A12 Al3
A21 A22 A23
A3l A32 A33

oooooooooooooo

such that 4;;e% for all i and j (see [9], p. 159). In this regard we have the
following

1.6. THEOREM. If U is a pre-reflexive operator algebra, then % @ #(H) is
pre-reflexive. '

Proof. Since % is pre-reflexive, and hence a weakly closed algebra
containing identity, # @ #(H) is a weakly closed algebra of operators
containing identity. Let B be an operator on H® H satisfying

(2 Lat(‘?l@@(H)) cLatB and Lat(%@Q(H)) < Lat B*.
Then
Bll B12 B13
B= B,y B,, By,
Bs; B3, Bai; ’

where B;;e #(H). Suppose MeLat%. Let
N=) @M, with M, =M for each k.
k=1
Then Nelat% @ #(H). Hence NeLatB and NelLatB* by (2). This gives

MelLlatB;; and MeLatB} for all i and j. Hence
Lat% < LatB; and Lat% <LatB} for all i and j-
Therefore, for all i and j,
Bije(Alg Lat %) n (Alg Lat %)* = % N 4*,

since % is pre-reflexive. This implies that B;; and BY; belong to # for all i and j.
Hence

BeU@®#H) and B*e¥® #(H),
ie.,
Be(% @ #(H)) N (% @ B(H))*.
Therefore % @ #(H) is pre-reflexive.
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2. In this section we introduce the notion of a pre-reflexive operator in the
following way:

2.1. DEFINITION. An operator T on H is said to be pre-reflexive if the
algebra o/, generated by T and the identity operator is pre-reflexive. Since
Lato/, = LatT, T is pre-reflexive if

Ay ot = (Lat T).

Every reflexive operator (i.e, an operator such that o/ is a reflexive
algebra, see [3]) is pre-reflexive. Also a subnormal operator, an analytic
Toeplitz operator and an isometry are pre-reflexive, since each of them is
reflexive by [8], [11] and [4]. We also have the following fundamental results:

2.2. THEOREM. (i) If T is pre-reflexive, then, for each scalar A, T+ Al is
pre-reflexive.

(i) If T is pre-reflexive, then T* is also pre-reflexive.

(i) Any operator unitarily equivalent to a pre-reflexive operator is pre-
-reflexive.

(iv) If T, and T, are pre-reflexive operators satisfying

Ar0o1,=H1,DHr1,,

then T, @ T, is pre-reflexive.
Proof. (i) Let T be pre-reflexive. Then

AN At =(Lat Ty.
Now, since &, = &1,y and Lat T = Lat(T + AI), we have
ArearN Aty =[Lat(T+AI].

Hence T+ Al is pre-reflexive.

(i) The proof is the same as in the case of pre-reflexive algebras, since
(p)* = A

(i) Let T be pre-reﬂexive and let S be a unitary operator. We claim that
S S* = elsrse. Since STS* is in S/, S*, we have

Aspse S Sl S*.

Also Sof.S* = S( sesTs05)S*, which is contained in S(S* 15 S)S* by the
previous argument; but that is just /s, so the converse inclusion holds.
Hence S S* = ofsrse. Now T is pre-reflexive, therefore o/ is pre-reflexive,
and hence, by Theorem 1.1, So/.S* is pre-reflexive. Consequently, &srse is
pre-reflexive, and therefore STS* is pre-reflexive.

(iv) Let T; and T, be pre-reflexive. Then &1, and &1, are pre-reflexive.
Therefore, by Theorem 12, ofr @ /r, is pre-reflexive, ie., 1,1, is
pre-reflexive. Hence T, @ T, is pre-reflexive.
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23. Remark. If T, @ T, is pre-reflexive and if
Lat(T,®T,) =LatT,@LatT, and <t eor,=Ar,®Ar,,
then T, and T, are both pre-reflexive.

For,
dT:QTz N (dT|GTz)* = (Lat(n @ Tz))'
* gives
(r, ® ) O (%, © A1) = (Lat T, ®(Lat Ty) .
Therefore

g, NnA¥, =(LatTy and oF,NnA¥F, =(LatT).
Hence T, and T, are pre-reflexive.

3. In this section we assume the space H to be finite dimensional. In this
case, if T is any operator on H, the weakly closed algebra generated by T and
I consists of the polynomials in T. Also then if

m = [] pi*
i=1
is the minimum polynomial of T with p,, p,,..., p, distinct irreducible monic
polynomials, then the subspaces
M, = N[P(T)"], 1<i<n,
where N[P;(T)'] denotes the null space of p,(TY", are invariant for T, are
linearly independent and span H. The restrictions T, = TIM; are called the
primary summands of T. The representatlon T = Z @ T, is called the primary

decomposition of T (see [7], p. 180). We have the following
3.1. THEOREM. For an operator T on H, let

3) T= 3y @F

be the primary decomposition of T. Then T is pre-reflexive if and only if each T, is
pre-reflexive.

Proof. To prove the theorem we need the following lemma:

3.2. LeMMA. If T, and T, are any two operators on the Hilbert spaces H,
and H 2 (not necessanly fi nite dimensional) satisfying

Lat(T1 @®T,)=LatT,®LatT,,
then
[Lat(T, ® T,)] = (Lat T,y ®(Lat T;).
Supposing the validity of Lemma 3.2 we see that if T is pre-reflexive, then
N oAy = (Lat TY.
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This means, using (3), that
Arndt=(Lat ) DT).
i=1
' Now

LatT=Lat ) @T,=LatT,®LatT,®D...§Lat T,

i=1
by Theorem 1 of [2]. Hence, by Lemma 3.2,

(LatTY =(LatT,)®...®(LatT).
This gives

dpnatt=Y OLatTy.
Also o
=3 @t
by [5], p. 91. Therefore )
(L ®h)n (Y Dot = ¥ D(LatTy),
ie., o o i
é @ (ot 0 A%,) = é D (Lat Ty

Hence
Ar, N A}, =(LatT) for each i.

Then each T, is pre-reflexive. The converse can be done by retracing the steps
back.

Proof of Lemma 3.2. Let
Ae[Lat(T,® T;)) = (Lat T, @ Lat T,).
This means that AP = PA for every projection P in Lat T, @ Lat T,. Hence, in
particular, for each projection P, in LatT, and P, in LatT,,
A(Plepz) = (Pl @ P,)A.
Therefore A = A; ® A,, where A, is an operator on H, and 4, is on H,, and
A,e(LatT,) and A,e(LatT;).
Hence
A=A, ®A,e(LatT)) ®(Lat T,).
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Thus
[Lat(T, ® T,)] < (Lat T,Y @(Lat T3)'.

The converse inclusion follows by usual computations. This proves the lemma.

If 4 is any algebra of operators on H such that each operator in ¥ is
pre-reflexive, then this does not necessarily imply that 4 is pre-reflexive. For
example, if H is of dimension 4 and if

U = {T: T(c,, ¢y, 3, ¢s) = (0,0, ac,, bc, +ac,), a, b scalars},

then every operator in # being reflexive [5] is pre-reflexive, while # is not
pre-reflexive because the identity is not in % However, we have the following

3.3. THEOREM. If % is a commutative pre-reflexive algebra on a finite-
-dimensional space, then each element of ¥ is pre-reflexive.

Proof. Let # be pre-reﬂexivc; and Te¥ Let
Be(Alg Lat T) n(Alg Lat T)*,
ie.,
LatT<LatB and- LatT < LatB*.
Since TG?I{ we have Lat# < LatT. Consequer'itly,

Lat# < LatB and Lat# < LatB*.
This implies that
BeAlg Lat # n (Alg Lat %)*,

and therefore Be ¥ N ¥*, as ¥ is pre-reflexive. Now Be#, Te# and % is
commutative, so BT = TB. Thus T and B are operators on a finite-dimen-
sional space such that Be AlgLat T and B commutes with T therefore B is
a polynomial in T ([2], Theorem 10). This gives Be o/.. Also B*e% and
B*eAlgLat T imply that B* is a polynomial in T, therefore B* € o/ by the
same argument. Thus Be o/ n «F. Hence T is pre-reflexive.

The authors are thankful to Prof. B. S. Yadav for his kind help in the
preparation of the paper. Thanks are also due to the referee for suggesting
many improvements over the original version of the paper.
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