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ON THE PROXIMATE FIXED-POINT PROPERTY
FOR MULTIFUNCTIONS
BY
T.B. MUENZENBERGER (HOUSTON, TEXAS)

In this paper* a study of e-continuity is initiated from the viewpoint
of multifunctions, and a proximate fixed-point property is developed
for various classes of e-continuous multifunctions. The purpose of this
paper is to generalize some fixed-point theorems of Klee [2] and Yandl [7]
to the setting of multifunctions. The main results are that if a metric
space X has the proximate fixed-point property for multifunections, then so
does every compact m-retract of X and that if, further, X is compact,
then every metric homeomorph of X has the proximate fixed-point proper-
ty for multifunctions. The author and R. E. Smithson have proved in re-
lated papers [4], [5] that non-empty, compact, convex subspaces of locally
convex, Hausdorff linear topological spaces and trees both have the
proximate fixed-point property for various classes of multifunctions.

The author wishes to express his appreciation for the suggestions
of Professor R. K. Smithson which led to the results of the present paper.

A multifunction F on a space X into a space Y is a correspondence
between elements of X and non-empty subsets of Y. To be precise
F c XxY, and, for each #¢X, m,(({#} X ¥Y) ~ F) # O where z, is the
second projection on X XY into Y and [J denotes the empty set. In
particular, every (single-valued) function is a multifunction. We shall
write £': X — Y for a multifunction on X into Y and F(x) for the set
7o(({#) X ¥) A F).If A = X, then F(A) = (J{F(x)|weAd}. If Uis a subset
‘of some topological space X, then U° and U™ denote the interior and
closure, respectively, of U in X.

DEFINITION. Let F: X — Y. Then F is lower semi-continuous (l.s.c.)
if and only if for each ze¢X and for each V =V°c Y such that F(xz) ~
~ V # [0 there exists U = U° < X with #e¢U such that F(z') ~ V £
for all "« U. Further, F is upper semi-continuwous (u.s.c.) if and only if
for each #eX and for each V = V° < Y such that F(x) < V there exists
U= U°c X with #¢U such that F(U) < V. The multifunction F is
continuous if and only if ¥ is both Ls.c. and u.s.c.

* Based in part on a Master’s Thesis written while at the University of Florida.
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If r is a positive real number and if A is a subset of a metric space X,
then

8,(A4) = {w|zeX and d(x, A) < 7}.

DeFINITION. Let F: X — Y, where Y is a metric space, and let
¢ > 0. Then F is lower e-continuous (l.e-c.) if and only if for each zeX
and for each yeF(x) there exists U = U° ¢ X with x#¢U such that
F(#') ~ 8.(y) # O for all #’«U. Further, F is upper e-continuous (u.e-c.)
if and only if for each weX there exists U = U° < X with zel such
that F(U) = 8,(F(x)). The multifunction F is e-continuous if and only
if F' is both l.e-c. and u.c-c.

Let P be a property of sets. Then F: X — Y is point P (image P)
if and only if F(z) has property P for each zeX (# () has property P
for each B = X with property P).

An alternate definition of e-continuity for point closed multifunctions
F: X — Y, where Y is a metric space of finite diameter, can be formulated
in terms of the Hausdorff metric [1] for the space S(Y) of non-empty,
closed subsets of ¥ and the induced function f: X — 8(Y). If, moreover,
F is point compact, then the two definitions of e-continuity are essentially
equivalent [3].

We now indicate the close correspondence between continuity and
e-continuity. It follows from the above definitions that if F: X — V is
point compact and u.e-c. for all ¢ > 0, then F is u.s.c. Furthermore, if
#: X — Y is point compact, then F is e-continuous for all & > 0 if and
only if F is continuous.

DEFINITION. Let A < X. Then A is an m-retract of X if and only
if there exists a continuous multifunction F: X — A such that F(x)
= {x} for all zeA.

The proof of the following lemma is not difficult:

LeMMA 1. Let A be a compact subset of a metric space X, let F: X — A
be an u.s.c. multifunction such that F(x) = {@} for all ze A, and let n > 0.
Then thereis a A > 0 such that if v« X and if d(w, A) < 2, then d(x, F(z)) <17
and d(F (x)) < 7.

If F: X — Y and if G: Y — Z, then a multifunction Go F: X - Z
is defined by @ o F(z) = G(F(x)) for each zeX.

LeMMA 2. If F: X — Y s e-continuous where Y is a subspace of
a metric space Z and if G:Y — Z is such that d(y,2) <e, for all yeY
and for all zeG(y), then Go F: X — Z is &'-continuous where & — e+ 2¢,.

Proof. In order to show lower ¢'-continuity, let xeX and let
zeG o F(x). Then there exists yeF (x) such that 2e@(y). Since F is 1. e-c.
there exists U = U° ¢ X with #¢U such that F(z') ~ S.(y) # 0 for
all #’«U. Let #'«U and choose y'e¢F(z') such that d(y,y’) < e Then
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we have d(z, G(y')) < d(z,y)+d(y,y)+dly’, G(y')) < e+ 2¢ = ¢'. There-
fore G o F(z') ~ Sy (2) # [0, whence G o F is 1.&’-c. The proof of upper
¢’-continuity is entirely similar.

LEMMA 3. If F: X — Y s continuous and if G:Y —Z is e-contin-
uous, then G o F: X — Z is e-continuous.

Proof. The proof of lower e-continuity is straightforward. For
upper e-continuity let # « X. Then for each y ¢ F' (x) there exists V, = Ve X
with yeV, such that G(V,) < 8,(G(y)) since @ is uw.e-c. As F is u.s.c.
there exists U = U° =« X with @eU such that F(U) c o {V,|yeF (2)}.
It is clear that G o F(U) < 8,(G o F(x)), whence G o F is un.e-c.

DEFINITION. A metric space X has the proximate fiwed-point prop-
erty for multifunctions (p.F.p.p.) if and only if for each 7 > 0 there is
an ¢ > 0 such that for every s-continuous multifunction ¥: X — X there
is a point xeX such that d(z, F(z)) < 7.

The proximate fixed-point properties for single-valued functions
(p.f.p.p.), for u.e-c. multifunctions, and for multifunctions with restric-
tions on the image sets are defined analogously.

THEOREM 1. If a metric space X has the p.F.p.p., then every compact
m-retract of X has the p.F.p.p.

Proof. Let A be a compact m-retract of X and let n > 0. Then
there exists a continuous multifunction F: X — A such that F(z) = {x}
for all zeA. By Lemma 1 there is a 1¢(0, n/8) such that if zeX and if
d(x, Ay < A, then d(z, F(x)) < n/4 and d(F(x)) < n/4. Since X has the
p.F.p.p. there is an ¢ > 0 such that for every e-continuous multifunction
H: X — X there is a point <X such that d(z, H(«)) < 2. The claim is
that ¢ works for 4 also. For let G: A —> A be e-continuous and let ¢ be
the inclusion on A4 into X. Lemmas 2 and 3 readily imply that ¢ o (G o F):
X —» X is s-continuous. Thus there is a point #¢ X such that d(x, ¢ o F(w))
< 2. Consequently d(x, A) < 4, and therefore d(z,F(x)) < n/4 and
d(F(x)) < /4. Now we have d(F(z), G o F(z)) < d(F(x), )+ d(x, Go F(z))
< n/4+ 2 < 5/2. Accordingly there exist points (p,r)eF (x) X F(2) and
q <G (p) such that d(r, ¢) < 5/2. Thus d(p,G(p)) < d(p,q) <d(p,r)+d(r, q)
< d(F(®))+9n/2 <=n, and A has the p.F.p.p.

The above proof of Theorem 1 follows to a fashion of Klee’s proof of
the assertion of Theorem 1 for single-valued functions [2].

DEFINITION. A space X has the fiwed-point property for multifunctions
(F.p.p.) if and only if for each continuous multifunction F: X — X there
is a point zeX such that vekF(z).

The fixed-point properties for single-valued functions (f.p.p.), for
w.s.c. multifunctions, and for multifunctions with restrictions on the
image sets are defined similarly.
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LEMMA 4. If a compact metric space X has the p.F.p.p., then X has
the F.p.p. for poini-closed multifunctions. '

Proof. Let F: X — X be continuous and point closed. It is imme-
diate that G(F) = (J{(z, y)|xeX and yelF(x)} is a compact subset of
X X X. Therefore the function dlaw): G(I') — R, where R denotes the
real numbers, assumes a minimum value r on G(F). If d(w, F(m)) >0
for each ze X, then r > 0. Let 5 = /2. Since F is s-continuous for every
¢ > 0, there does not exist an &> 0 such that for every e-continuous
multifunction G: X — X there is a point z¢X such that d(z, G (@) < 7.

A proof of Lemma 4 employing nets appears in [4] and [6]. Yandl [7]
proved Lemma 4 for single-valued functions. Partial converses to this
lemma may be found in [3] and [4].

COROLLARY. If a metric space X has the p.F.p.p., then every compact
m-retract of X has the F.p.p. for point closed multifunctions.

Let E* be a Euclidean 2-cell. By a theorem of Klee [2], every compact,
metric absolute retract has the p.f.p.p. As a consequence F* has the
p.f.p.p. but lacks the p.F.p.p. since Strother [6] has exhibited a con-
tinuous, point closed multifunction on E? into itself which does not have
a fixed point.

LEMMA 5. Let g: Y —Z be a continuous (single-valued) function on
a compact metric space Y into a metric space Z and let & > 0. Then there
18 an > 0 such that if F: X — Y is e-continuous where 0 < & < 1, then
golF: X —~7Z is &'-continuous.

Proof. Since Y is compact and ¢ is continuous, there is an » > 0
such that if (y, y’)e ¥ X ¥ and it d(y, y') <», then d(g(y), g(y")) < ¢
Let e€(0, n]and let : X — Y be e-continuous. To prove the lower &’-con-
tinuity of go F, let x#eX and let zego F(x). Then there is a point
yeF(x) such that g(y) = 2. Since F is le-c. there exists U = /° « X
with weU such that F(x') ~ S,(y) #« O for all 2'<U. Hence go F(z')A
~ 8y (2) # 0O for all 2’eU. Therefore go F is l.&'-c. For upper e&'-con-
tinuity let weX. Since F is u.ec-c. there exists U = U° = X with zel/
such that F(U) < SE(F(m)). It follows that go F(U) < Se,(go F(x)).
Therefore g o I' is u.e’-c., and hence &'-continuous.

THEOREM 2. If a compact metric space X has the p.B.p.p., then every
metric homeomorph of X has the p.F.p.p.

Proof. Let h: X — Y be a homeomorphism of X onto a metric
space Y and let 5 > 0. Since X is compact and & is continuous, there is
an #’ >0 such that if (z,2')eX XX and if d(x,2’) < %/, then d(h(z),
h(’m’)) < 5. Since X has the p.F.p.p. thereis an ¢ > 0 such that for every
¢'-continuous multifunction F: X — X there is a point weX such that
d(z, F(x)) < 7'. Since Y is compact and h': ¥ — X is a continuous
function, there exists an & > 0 by Lemma 5 such that if F': X — ¥ is
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e-continuous, then A='o F': X — X is ¢’-continuous. Let G: Y —> Y be
an arbitrary e-continuous multifunction. Lemmas 3 and 5 imply that
h~'o(Goh): X - X is &'-continuous. Thus there is a point xeX such
that d(w, k"o (6o h)(2)) < n’', whence d(k(z),G(h(x))) <n and ¥ has
the p.KF.p.p. Q

It can be seen by means of an inductive proof that (0, 1) and [0, 1]
both have the p.F.p.p. for point compact multifunctions. Therefore the
p-F.p.p. is not a topological invariant since the set of real numbers clearly
does not have the p.F.p.p. '

We now prove a generalization of the last theorem in Klee’s paper [2].

THEOREM 3. Lel X be a compact Hausdorff space which is an absolute
retract for such spaces. Then for each open cover % of X there ewists a finite
open cover ¥~ of X which has the following property: if G: X — X is any
multifunction such that for each xeX there ewists N, = N3 < X with zeN,
satisfying G(N,) < V for some Ve¥", then there is a point zye X such that
2oe U and G(x,) = U for some Ue. '

Proof. We can assume that X is a compact retract of a Tychonoff
cube T = [0, 11", and we consider 7 as a subset of the linear topological
space R, where R denotes the real numbers. Let # be a symmetric base
for the uniformity for 7' such that for each xeT and for each Be#, we
have that B[] is convex. Suppose that # is an open cover of X. Then
there exists a member R of the uniformity for 7' such that R[#]is a subset

of some member of # for every zeX. Choose Be# such that BoB R,
and pick a continuous function f: 7 — X satisfying f(z) = @ for all z<X.

There exists Be# with B < B such that if ¢te7 and if B[t] ~ X + [,

then f(1) eﬁ[t]‘. This follows from an extension of Lemma 1. Choose Be%
such that Bo B < B. Then we let ¥ be a finite subcover of {B[z]|zeX}
which covers X. Suppose that ¢: X — X is any multifunction such that
for each e X there exists N, = N3 < X with <N, satisfying G(N,) <« V
for some Ve¥". Now choose a finite subcover A4 of {N,|weX} which
covers X, and for each xe X let W, = ~ {Ny|zeN,eA}. For each § =« X
let CH(S) denote the convex hull of § in 7. Then define a multifunction
H: X — T by H(x) = (CH(G(W,)))" for each z<X. The multifunction H
is obviously point closed, point convex, and w.s.c. By the Kakutani-
Fan-Glicksberg fixed-point theorem [1] (which is generalized in [3]
and [4]), there is a point t,eT such that {,eH o f(t,). Let z, = f(,). By
the definition of H there is a point 1, ¢CH (G(W,)) such that t,eB[4,].
Since A4 covers X and since B[x] is convex for each xeT, there is a point
(#, ') e X X X such that CH(G (W) = CH(G(N,)) = B[z]. Thus (4, z)< B,
whence (to,mo)el}. Therefore (x, x))eR. But also G(z,) < B[z] c R[xz],
and this proves the theorem.
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Remarks. Theorems 1 and 2 are easily generalized to uniform
spaces. Furthermore Theorem 1 can be extended to a generalization
of a theorem of Yandl [7] on strong proximate retracts. It is only necessary
to use Lemma 1 as a guide to defining the concept of a strong proximate
m-retract thereby obtaining directly an extension of Theorem 1 and
Yandl’s theorem. The details are in [3]. Variants of Theorems 1 and 2
are of course immediate by restricting the classes of multifunctions con-
sidered. We indicate in closing an outgrowth of Theorem 3. Suppose
that X is a compact Hausdorff space which has a symmetric base %,
for its uniformity. For a given property P of sets, let P(X) be the subsets
of X which have property P. Suppose further that there is a function
K:2% — 2% (where 2% denotes the collection of all subsets of the set X)
such that P and K satisfy the following conditions:

(i) If Ae2%, then A < K(A4)P(X).

(ii) If A = Be2¥, then K(A4) = K(B).

(iii) If AeP(X), then K(A) = A and A*eP(X).

(iv) {{m}]meX} v {0} = P(X).

(v) If AeP(X) and if Ue%,, then U[A]eP(X).

We call K a P-operator for X. If, in addition to the above assump,
tions, X has the F.p.p. for point closed, point P, u.s.c. multifunctions-
then the conclusion of Theorem 3 is verified. The proof of this assertion
duplicates the proof of Theorem 3 given above. Two examples of spaces X’
with the aforementioned properties are non-empty, compact, convex sub-
sets of locally convex, Hausdorff linear topological spaces and hereditarily
unicoherent, arcwise connected, locally connected continua (trees) [4].
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