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1. Introduction. It is already a classical result that the ¢-equation du = f
has a solution on pseudoconvex domains in C" if the necessary integrability
condition ¢f = 0 is satisfied. In C* such a solution can be written explicitly
by means of the Cauchy transform. In 1969 Henkin [2] and Ramirez [6]
constructed the analogue of the Cauchy kernel for strictly pseudoconvex
domains. This result gave rise to a new approach for solving the c-equation,
developed by Grauert and Lieb [1] and Henkin [3]. During the last ten years
several results regarding regularity of certain solutions were obtained by the
use of solution operators defined by kernels. It turned out that on a strictly
pseudoconvex domain D the equation Ju = f, where Jf = 0, with bounded f
has a solution belonging to Lip,,,(D) (see [4] and [8]). If feC*(D), then
there is a k-times differentiable solution with derivatives of order k in
Lip,,, (D) (see [5] and [11]). The absence of strict pseudoconvexity makes
the problem more complicated. The recent example of Sibony [10] shows a
pseudoconvex domain in C? with smooth boundary, and a bounded (0, 1)-
form f on D, ¢f = 0, such that the equation ¢u = f has no bounded solution
- on D.

This is the reason to impose certain restrictions on pseudoconvex
domains to be considered, so that one may obtain some regularity results for
solutions of the J-equation. It has been known that one can write a certain
solution operator for ¢ in the case of smooth convex domains. Pseudoconvex
domains with real analytic boundary became also a point of interest.

This paper is devoted to a certain class of pseudoconvex domains in C".
Namely, we define

D™ ={z: r(z) <0} forr(z)= ) Izjlz"'j—l.
j=1

Such domains were investigated in [8]. The main result of this paper is
Theorem 4.1 which states that for fe Cg,(D™)n CQ,(D™) with ||f]|, < o0
and ¢of =0 there is a solution u of cu=f in Lip,,4(D™) for 0 <8
< 1/max {2m;}. This result is obtained by constructing a certain solution
operator for the J-equation on domains D™. One can notice that a similar
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solution operator can be defined on any convex set with smooth boundary.
Moreover, if the boundary is real analytic, one may expect results similar to
those presented for the domains D™. In a particular case of C? it is quite
easy to obtain such estimates.

2. Preliminaries. The main tool to obtain Holder estimates is the
following classical result:

LEMMA 2.1. Let D = R" be an open set with smooth (C*) boundary and
defining function r, and let 0 <0 < 1. If f e C' (D) n L*(D), A > 0, and there is
a neighbourhood W of bD such that for every xe W nD

lgradf (x)] < Alr()°~",

then f € C°(D). Moreover, there is a constant K which does not depend on f and
satisfies the inequality |f(x)—f(y)| < KA|x—y|® for x, ye W nD.

LEmMA 2.2. If D = R" is an open set with smooth boundary and defining
function r, then for every neighbourhood U of D there are a 8, <0 and a
family of linear operators E®: C°(D;) —» C2(U), 6o <6 <0, such that

(a) E’ulp, = u;

(b) for k=1,2,..., if ueC*(D;), then E’uecC(U), and there are
constants C, independent of 6 such that

I|E? u”,‘,.n < Cillully, s
(c) for ueC°(D),
lim E%ulp, = E°u
-0
uniformly on R".
For the proof see [5].
LEMMA 23. Let 0<s<n—2, x =(xy,..., X2n—-2)€R** 2, y, teR, L >0,
MeN. For every A >0 and 0 < < 1/M there are constants C; (i =1, 2, 3)
independent of L such that

A A
dxdydt
Il N jj \[ > yn—s—z < Cl Lﬂ—l’
IXI#*(y+e+ L+ XM ]

0 0 |x|<4 (L*‘xgj—l"'x%j)
A4 Fl
I = jj J dx‘iyf,ifs_z <C, L7},
00 |x|<A(.V+|x|)2’+2(t+b+|x|M)2 l:[ (Hx%j—l+xgj)
| A4 J_l
I = JI dxdynd_tﬁ_2 <C, I
0 0 |x|<

Ay x>+ 3 (L+ | x|™) l_[ (l"'xgj—l+x§j)
\ i

J
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Proof. First we estimate

dx
I= - n—s— 2
i< X% (LA |x]™) H (Lt x3;- 1+x21)

i=

Let x' = (xZn_2,-3,..., x2n-z)ER28+z- Then

dx
I s n—s—2
|x|sA|x'|2’+l(L+ Ix1™ [1 (L+x3-,+x3)

i=1

A
dx’ n—s—2
<
_[lez’“(HIXI"‘) 1:[1 J
-4 -

Ix'|<4

dej- 1 dej
L+ xf_,_ 1 +X§J

:s"—‘wi

Notice that for every é (0 <d < 1)

L x3y_+x3; > (63—, +x3)' 0L

Therefore
A A A A
dx,;—dx,; dx,;_,dx
j—1 2j 2j—-1 2j - 6
2 > < > 3 L < const L™
lf"ij_l“'xzj (ij..1+x21)
-A4-4 -A-4
Moreover,
A
dx’' r2stigy dr
= = < const L"1*VUM
x| (L+|xM) ] rB=t (L r™) L+r™
x| <A 0 o
Hence

I < const L"%n—s-2 [-1+1/M

Choosing 6 so that —d(n—s—2)+ 1/M = 6 we obtain I < const I°~ . Now it
is enough to notice that I; < I for i = 1, 2, 3. In all three cases this is implied
by Fubini’s Theorem and by the following inequalities:

dydt 1
(y+t+ L+|x|™)3 s (t+L+|x|M)2 s L+ |x|™’
00
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A A
[ dydt < 1
(y+Ix)> 2+ Lt |x™)? ™ (Lt [x™) x>+
00

A A

f dydt < 1
(t+y+|x|)2s+3 ~ |x|23+1'

00

From the proof of Lemma 2.3 we obtain immediately the following

LEMMA 2.4. For every A>0, MeN, and L > 0 there are constants C;
(i=1, 2, 3) not depending on L such that

A A
dx,dx,dydt _
a s 1+1/M
(@) ff flxl(y+t+L+|le)3 G L ’
0 0 |x|<4
A A
dx, dx,dydt 141
< M
®) f f f G as L S
0 0 |x|<4
A A
dx,dx,dydt 141
< M
(©) f f Cryr )P e S Gk
0 0 |x]<4 ’

3. A solution operator for smooth convex domains. Let D — C" be a
convex domain with smooth defining function r. Assume there is a é, > 0
such that for |6 < 6, domains {¢: r(£) <6} are convex. Notice that in the
case where D has real analytic boundary there is a defining function r
satisfying the above condition.

For 1 <j<n put

or " or
—(&), D& 2=Y —
2, (©) ¢, 2) ,-; %,

_P©
A T
P& =87, @& =l¢~1}

P}, 2)
P°(¢, 2)

P} = O (&—2),

on {(£, 2): ®(¢, 2) # 0},

wi (¢, 2) =

for & #z.
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For Ael let
w;(&, z, ) = (1= wj (&, 2)+Awj (£, 2).

Let G be a neighbourhood of D such that G < {&: r() <o} and let K
= G\D. Notice that w; are well defined on K xD x1I.

Let E: C°(D)— C2(G) be a linear operator such that

(a) -Eulp = u;

(b) if ue C*(D), then Eue CX(G), k =1, 2,..., oo, and there are constants
C, such that ||Eu||k,c,, < Gy llullx,p-

The existence of such an E follows from Lemma 2.2.

For ¢=0,1,...,n—1 and (¢, z, ))eK xD x 1 let

K, (&, z, 4)

=(—1)¢(n_l)det(w, o,w,..., Ezv&,fuw,..., Oaaw) AdEy A ... NdE,.
1 n—q—-1
Let K,(¢,z,))=K_,(£,2,2) =0. Put B, ({,2)=K,(£, 2, 0); it is a well-
defined locally integrable form. Since
Z Wj('f, Z, }')(éj_zj) =1,
j=1
it follows from properties of det that J;; K, =(—1)?0,K,_, for 0<g<n.
The following lemma is proved in [8]:

LemMa 3.1 (the Bochner—Martinelli-K oppelman formula). For ue Cg, (D)
and zeD

u(z) = ¢, u (&) A Bpg(€, 2)— [O0u(®) A Bog(&, 2)—0; [u(§) A Bpy—1 (&, 2)),
bD D D
where
(—l)"("- 1)/2
= omiy
Definition 3.1. For ueCg,(D), 1 <q<n, and zeD define
’I;u(z) =0Cp j u(&) A Kq—l(é’ z, }.)—C,,ju(é) A Bnq—l(c’ Z).
bD xI D
It is well known (see [8]) that T, is a solution operator for the 0-
equation; namely, if ueCg,(D), 1 <q<n, du=0, then dT,u =u on D.
Definition 3.2. For 1 <q<n, ueCj, (D), and zeD define
Squ_(z) = C,,[ I u(é) A Kq—l(éa z, l)—ju(é) A Bnq-l(é, Z)—'
D

bD x1I

- I Eu(é) A Kq—l(és z, }')-az J. Eu(é) A Kq—Z(cs z, )*)]

K x {1} KxI
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LemMma 3.2. If ueCg (D), du=0 on D, then dS u(z) =u(z) for zeD.
Moreover, in this case

Squ(@) =cy[— | CEu(®) A Kg-1 (€, 2, )= [Eu(®) A By (£, 2)].
G

K xI

Proof. Notice that
Squ(z) = Eu(z)_cn [ Eu(é) AKq—l(i’ Z, A)—cngz j EU(é) AKq—Z(éa z, l)

K x{1} K xI

Since T, solves the ¢-equation, we have

OS,u(z) =u(z)—0C,c, | Eu(®) AK,_ (&, 2z, A).

K x {1}

The last term is equal to zero, since K,_;({,z,1)=0 for ¢ >1, and
K, (&, z, 1) is holomorphic in z for g = 1. Hence S, solves the J-equation.
Since b(K xI) =bG xI—bD xI+K x {1} — K x {0}, by Stokes’ Theorem and
properties of K, we obtain

_‘. EEU(é) A Kq-l(€9 z, A)—Ez I Eu(f) A Kq—2(€9 z, '1)

K x1I K xI

= [ CEu(®) A Kq-1(&, 2, )+ | Eu(€) A 0uKy-1(,2, 1)

K xI K xI

= I 5{). [E“(é) A Kq—l(éa z, A)] = I EU(é) A Kq—l(éa z, '1)

K xI WK xI)

= wj ’Eu(é) AKg-1(&,2, )= | Eu(®) AKg-y(C, 2, D+

bD xI

+ [ Eu@AK, (& 2z, )= | Eul@)AK, 2z, 4.

K x {1} K x {0}

Since Eu =0 on bG, we have

_“ Eu(é) A Kq—l(éa z, l) = 0’

bG x1I

and the result follows immediately.

To obtain Hoélder estimates for derivatives of order k we consider the
cases k =0 and k > 1 separately.

In the case k =0 we make use of the form of S,u given by the
definition.

For k> 1, ie, for ueCg,(D), k > 1, we use Lemma 3.2. Since it is a
classical result that for every 8 (0 <80 < 1)

l”Eu(é) A Bpg-1 (&, Z)“Ho < const ||ul,,
G
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it remains to estimate only the term
§ OEu() A Kg-1(¢, z, 4).
K xI

In a next step we write the above integral as a linear combination of
terms which are easier to be estimated.

From the definition it follows that K,_, is a linear combination of the
terms

A(1—Aydet(w?, 0, w°,..., G;w!, (W' —w%d4, &w,..., Cew!)
q-1 n—;—l

ANdE A ... AdE,,

A(l—=2ydet(wP, o, w°,..., G;wh, Cew®, ..., Cew!) Adéy A ... AdE,
q—1 n—gq
where in the first term i+j =n—1 and p=0, 1, and in the second one i+j
=n and p = 0, 1. After multiplying by JEu and integrating over A, integrals

involving terms of the second type vanish, and the integral | 0Eu A K,_,
K xI

is a linear combination of the terms
[ OEudet(w®, w', 3,w°,..., O, w', O,w°,..., O;w') AdEy A ... AdE,.
K

Notice that for 0 <s<n-2

det (W, O, w°,..., G w°, wl, C,w!, ..., G, w!)
N A —

7

s n—-s—2

det(P°, 7, P°,..., s P°, P, G, P,..., 0, PY)
= (¢0)s+1 ¢n—s—l ‘

Let
CEu(®)= Y fi(§)de™’.

[l=q+1

Then f; =0 on D and f;e Ct™'(G). If {U;}}-, is a finite covering of K and
{XJ};‘"=1 are C*-functions such that

Y xyy=1on K and suppy < cU,,
j=1

then in order to estimaté

D; | OEu(®) A Kg-1(&, 2, ) SlulleIr@I°~*  for |o] < k+1

K xI
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it is enough to show that for every j and J

AdE, A ... ANdE,

. _,det(P°, 3, P°,..., 3 P°, P\, 5, P',..., 5 P")
XJ'-/} dé (¢0)s+ 1 ¢n—s-— 1

Uj

St fille-1Ir@°7Y 0<s<n-2.

To simplify the notation let v(¢) = x;(£)f;(¢). Then ve C¢™'(U;), and v =0
on U;nD.

Lemma 3.3. There are a finite covering {U;} of K and a > 0 such that for
every j there is v; with |6d5/6év| a on U;xU;.

Proof. Since

%g(f, ) a{ aé} 2 O =2)+ a&.(é”
we have
0P
‘@(‘fo, So) = T (fo) for every ¢,eK,
and therefore
55v¢0(€0’ Eo) #0  for some vy,

hence also in some neighbourhood of (&y, &;). The result follows from
compactness of K.

ProrosiTION 3.1. Assume |0®/0E,| =a on U xU. Then for zeU and
2<|a| <k+1, 0<s<n-—2 the expression

or 0*r

(€o—Zo) (6) =) ... = ©
. o¢ o0&, 0¢ O p_g—1 O&,_o_
Dz Jv(é) . (;0)s2+1 ¢n—s—l - - dé
v
can be written as a linear combination of the terms
N;(&, 2y (E)
va(é)lé—ZI" 0O,
where
(n s-1 52,
n é 4) if vé¢{2,..., n—s—1},
v ={ 3" i
(:) é) ; 29"-9 - _1"
3 J];I %, aﬁ,( if ve{ n—s

Jj#v
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0<|Bl <=2, ¢(&) is a bounded C*®-function, 0 < m < 2, and N;(¢, z)'s are
products of j-factors of the form (z;—¢&;) or (Z;,— &) with

NE D 1
=2 =g

Proof. Induction on |a|. Let J; denote either d/0z; or 0/0z;. Notice

1\ _ , oo 1 N 2)
‘3‘(5'*)"1‘@_‘ and O g = P

1. Let || = 2. One can easily calculate that the term

(el =B —(m+q) > 0.

that

le_¢|2s+2 P s 1

is a linear combination of terms of the required form.
2. Assume that the proposition holds for 2 < |¢| < k+1 and consider

Ni(§, 2y (9)

Iz_é|p¢n-s— 1+m

0 JD” v($) @()d¢.

U

Notice that this expression can be written as a linear combination of terms
of the forms

N;_,(&,
jv"v(c) 1t IV e

|lz—

U

' N'+ ’
Jor o0 e O oiae,
U

JDpv(é) : Ni(éa Z)l//(é)

Iz_élp ¢n—s—l+m+ 1

@ (&) de.

U

All terms with the exception of the-third one for m = 2 are in the required

form. Since
1 _i( 1 (3(15 -1
Prst2 - a{v Prst1 aév

after integrating by parts and using the fact that » has a compact support
contained in U, i.e, all boundary integrals involving v vanish, we obtain

z_€|p¢n—s+2

U
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_ N; (&, 2)y (&) op\"! 0 1
_IDﬂv(f)—'l—zTél—p——' (5)(66‘.) %(W)dc
v

_ J d [D"v(c)N.-(c, 2) @ (&) (00/3E,) !
2,

el |vograc

One can easily see that the resulting integral has the required form, and so
the proof is complete.
The following lemma can be shown by standard arguments [3].
LEMMA 34. There is a neighbourhood W of bD such that if ze W and

ac,,(z) #0,

then the functions (Xy,..., Xan—2, ¥, t) form a set of real coordinates in some
neighbourhood of z, where

y@) =Im®(¢,2), t()=r(),
x3j(Q) =Im(S—z), x3;-,(&) =Re(§;—2z), j=1,....,n-1.

4. Holder estimates for derivatives of the solution operator on domains
D™, Let

r(z) = Z Izjlzmj— la m; = l’

M=max{2m; j=1,...,n}, D={z:r(z) <0}

Notice that D is convex.
The following inequality is shown in [7]: There is a constant C > 0 such

that for [£—2z| <1
(1)
r(z)—r(¢)—2Re Z (é)(ij zj)] L éjagj(é)léj z*+|¢— ZI“]

Let & be defined as in Section 3 and for a neighbourhood G of D put K
= G\D.
The following lemma can be obtained immediately from inequality (1).
LemMa 4.1. If z, (e C", |z—¢| <1, and r(z) <7(&), then
2

o‘r
125, 2)| R ImD(C, 2)|+r(8)—r(2)+ Z 3, OF,
i=19;

COROLLARY 4.1. For every R > 0 there is a constant C > 0 such that for

= (OI—z +[E—2|™.
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&,zeB(0, R) with |E—z| <1 and r(z) < r(¢) the following inequality holds:

o*r
%, %€, 1

< .
®(¢, 2) r@@)—-r@+I1¢—zj’

Proof. Since
o*r 2|5|2(mj b
ae,ag, ~ "
from Lemma 4.1 we obtain

*r/d¢; 6{1
(¢, 2)

Z(Mj- 1)

m?|¢ |
r(&)- r(z)+}:m,|¢|""' 1& -z,

1 1
< X
[r (&) —r@Ym2 & ™" +1&— 2 r(é‘) r(2)+1¢—z)l?
Remark 4.1. For ze B(0, R) we have

‘< const

_my—1_ _my— 0?
3_21(2) = Imj(z;2)" "z < Rm}(z;z)™ "' = R3 }arfj(z)'
Therefore
0%r or
I'/’(é)l s aél aEl (C) aén_’_z aEn-s-z (C)s

where ¥ is as in Proposition 3.1.

This remark together with the proof of the next lemma explain why two
different forms of y in Proposition 3.1 are used. Namely, in both cases Y can
be estimated by the product of n—s—2 factors of the form 6%r/d¢; 6¢;. In the
form of the integral appearing in the assumptions of Proposition 3.1 there
are n—s—2 such factors, but one of them may disappear when differentiation
by parts in the “normal” direction is performed. In this case it is
compensated by the additional term Jr/d¢&,.

Now, let U = G be an open set such that for every ze U the functions
r), Im&(, z), Im({;—z), Re(¢;—z) (j=1,..., n, j # jo) form coordinates
on U, and |é—z| <1 for &, ze U. From Lemma 3.4 it follows that bD can be
covered by such sets.

LemMa 4.2. If veC-~Y(U), v=0 on DN U, then for zeU D

‘ jnﬂv(c) = az“l’i(ff,..-,-m dé| < const [llly— Ir2)1°~,
U
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where 0<0<1/M, 0<m<2 (k—-1—|f)—(p+m)= -2, |Bl<k—-1,
0<s<n-2

Proof. Notice that [D? v(¢)] < const|[v]l,_; |E—2/**~!#!. since zeU A D
and v =0 on DN U. Therefore

¥ ()

|z_§|23+p+ 1 Prs— 1+m

¥ (&)

lz_§|23+p+l—(k-l—ﬂ) ¢n-s-— 1+m

¥ ()l

|Z_§|2s+3—m|¢n—s— 1+m| )

Df v(¢)

< const ||v|}x- ¢

< const ||v]],-

Thus it remains to estimate the integrals

@) B
(2) J Iz_é|2:+ml¢n—s+2—'m| dé’ m=1,2,3,

KnU

by const|r(z)®~ .
On KU we have the following estimates for ze D N U:

o*r or
W (Ol = 3, OF, © ... PR A (95
\l’(é) n—s—2 1 n—s—2 1 .
b < ,
ld»"“" i=1 r(é)—'r(2)+|zj—€j|2< ,-Dl Ir(2)| +1z;— &2
1 1

— 5 .
P~ Im®|+|r )| +r(&)+Iz—¢™

Therefore, integrals of the form (2) can be estimated by

(3) J [z=&¢" 1 (Im@(E, 2)| +Ir (2 +r (&) +]z—EM)* x

KnU
n—-s—2
X H (|"(Z)|+|€j—zj|2)]—l dg,
=1

4) § [z=&*"2(Im @ (&, 2| +Ir@)|+r (&) +]z—EM)* x

KnU

n—s—2
X ,H (Ir@I+1&;—2)*)] 1 ¢,
=1

5) xfb [lz=&** 3 (Im @ (&, 2)| +Ir (@) +7 () +]z— &™) x

n—s—2

x [T (r@I+1¢—z4*)] ' d¢.

j=1
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Introducing y = Im®(¢, 2), t =r(&), x2;(§) = Im($;—2)), x;-,(¢) = Re({;—2)
for j=1,...,n—1 (we can assume j, = n) as local coordinates on U, we
obtain the following estimates of (3)5), respectively:

dxdydt
(3’) n—-s—2 ’
00 |x|<,4|x|2”l(y'*’t"'|"(7-’)|'*'|)C|M)3 l_[ (|"(z)|+x§j—1 +x§j)

. =1

AA

, dxdydt
(4) n—s—2 4
00 |,|<A(y+|xl)2’+2(t+|r(z)|+|x|M)2 l_[ (|’(Z)|+x%j—1+x§j)

i=1

A A
(5) j.f .[ b
00 |x|<4(}’+t+|x|)25+3("(2)+|x|M) IT (r@i+x3;- 1+x21)

ji=1

By Lemma 2.3 all the above integrals can be estimated by const|r(z)°" !, and
the proof is complete.

ProrosiTiON 4.1." If

r@ =Y lz)*" -
i=1

M =max{2m;: j=1,...,n}, D={z:r(z) <0},
then for every k > 1 and 0 <0 < 1/M there is a constant Cg, such that, for
every ueCh, (D) with cu =0,
I1Sq telli+6 < Co llulli-

Proof. From Lemma 4.2 1t follows that there is a neighbourhood W of
bD such that

|Sq tllk+6,w~p < const |[ul|;.

The convexity of Dy = {z: r(z) <d), 6 >0, implies that ®(£, z) #0 on
K x(D\W); hence |®(¢, z)l > a >0 for some a >0 on that compact set.
Choosing a smaller a >0 one can also assume that |£—z| > a for (¢, 2)
€K x(D\W). Hence, for ze D\W the estimate is trivial.

ProposITION 4.2. If ue C4,(D), ou =0 on D, 0 < 0 < 1/M, then there is a
constant C > 0 such that ||S,ull < C||ul| .

Proof. It is a known result [7] that

| | @ AKe-r(, 2, H- ju(é)AB..q 1, 2o S ull -

bD x1I

9 — Colloquium Mathematicum 52.2
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Hence it is enough to show that for g > 1
D, 0, | Eu(®) A Kg-2(&, 2, A)| S ||EulloIr(2)° .
K x1I
To see this it is enough to find a covering {U;}7-; of bD such that for
veCy(U) and zeU; the following estimate holds
*r ?r
z —(¢) ... -
}Dz I o e, O o

©)
dg

(¢0)s+ 1 P s 1

Kf\Uj
S |loll o Ir(2)1°~ 1.
After direct calculations one can easily see that this follows from Lemmas 2.3
and 34.
Let G be a neighbourhood of D. For 6 < 0 let D; = {z: r(z) <} and let

E%: C°(Dy) — C2(G) be a family of linear operators satisfying conditions of
Lemma 2.2. For each 6 <0 and ue CJ,(D) n Cg,(D) with du =0 define

Squ(@) =c,[— [ OE°u(®) A K4y (&, 2, )~ IE"u(E) A Bp-1(&, 2)],
KgxI
where K; = G\D;.

Notice that S? solves the J-equation on D; and the Holder estimates
obtained for S, also hold for operators S2. Moreover, basically from Lemma
4.1 it follows that all constants appearing in estimates can be chosen
independently of & for 8§, <48 <O. |

LemMma 4.3. If ue C3,(D) n Cy, (D), Cu = 0 on D, then S3u(z) converges to
S, u(2) for every zeD. If in addition ue Ct,(D) for k > 1, then the same holds
for all derivatives of Siu(z) of order not greater than k.

Proof. Observe that

K5 x{1}
TPu@—c,d, | Eu(®) AKe-2( 2,4 for g>1.
KzxI
Let F < D be a compact set. Then F < D, for some n <0, and for n <6 <0
we have

Tqu(@@)—c, | Eu(®)AK, 1, 2,0) forq=1,
S2u(z) {

| § 4 A Bu-illorg, S llull vol(D;\ D).

D&\D
Moreover, by Stokes’ Theorem,
[ urnK, 1= | unK,
bDs x 1 bD, xI

= I d(uAKq-l)— j unk, ,— I unk,_,.

(Dg\Dy) x1 (D5 Dy x 1) (D3\D,) x {0)
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Therefore, taking the C*-norm on F, we obtain
TP u— T3 ull i, S (ICull o + Il ) vOL (D5 \ D).

Since E°u converges uniformly to Eu, this implies the statement for S2u. In
fact, for fixed ze D there is a neighbourhood W of z such that W < D; for
8 > 8,. Therefore, for 6 > 6, both @7 (¢, z) and &,(¢, z) are bounded away
from zero; hence they are convergent uniformly in ¢ on Kj.

THEOREM 4.1. For k>1 and 0 <0 < 1/M there are constants C,y >0
such that if ue C3,(D)n Ch,(D) and 0u =0 on D, then dS,u =u and

[1Squllx+6 < Cuollullx-

Proof. Let |a] = k and let v and v’ be coefficients of D*S,u and D*S}u,
respectively. Fix z, weD and ¢ > 0. Let 6 <0 be so small that

v(z)—v’(z)) <e and |o(w)—v®(w)| <e.
Then, by Proposition 4.2,
0° (W)= 0*(2)| S llulli |2 — wl°,
and therefore
o(2)—v(W)] < [ (2) =0 (W) +2& S |Julli |z —w]®+ 2e.

Hence ||S,ully+ ¢ < Ciollully for some Cyy.

Remark 4.2. In the case n = 2 one can obtain sharper results. Namely,
applying in estimates Lemma 24 instead of Lemma 2.3 one can obtain
Hoélder estimates of order k+1/M. This is the best possible value of 6

(see [7]).
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