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ON A PROBLEM OF LELEK CONCERNING OPEN MAPPINGS

BY
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1. Introduction. In 1942, Whyburn [7] proved that if f is an open
mapping of a compactum X onto a compactum Y, K is any connected
subset of Y, and Q any quasi-component of f~!(K), then f(Q) = K. Later
on, Professor A. Lelek raised the following problem:

If f is an open mapping of a compactum X onto a compactum Y,
K is any connected subset of Y, and C any component of f~!(K), is it true
that f(C) = K%

Epps, Jr., working on this problem, proved that Lelek’s conjecture
is true under the additional assumption that X is a hereditarily locally
connected continuum (see [1] and [5], Theorem 4.1).

We say that a mapping f of a topological space X onto a topological
space Y is strongly confluent provided, for each connected subset K of Y,
and for any component C of f~!(K), we have f(C) = K (see [1]). We also
say that f is H-confluent provided, for each subset Z of Y, each z€Z,
and each z € f~!(z), we have

f[Q(f—l(Z)7 w)] = Q(Zy z)-

In this paper* we provide a solution to Lelek’s problem, proving
that open mappings on compacta are strongly confluent under the assump-
tion that the image space Y is hereditarily locally connected (i.e., each .
connected subset is locally connected) (see Theorem 1). We also prove
that, without this assumption, open mappings are not always strongly
confluent (see Example 1).

The author wishes to thank Professor A. Lelek for several interesting
conversations and the valuable suggestions.

2. Two theorems on open mappings (). Let X be a topological space,
Ac X, and e A. We denote by Q(4,z) the quasi-component of @

* This work is a part of Chapter II of the author’s doctoral dissertation which
was prepared under the direction of Professor A. Lelek.

(*) These theorems were announced in the Notices of the American Mathema-
tioal Society 23 (1976), 76T-GS17.
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in 4. Write @°(X, #) = X and using transfinite induction define Q°(X, =)
for each ordinal a as follows:

Q“*(X,a) = Q[¢°(X,x),»] and Q*(x,w)=q@°<x,w)

for each limit ordinal 4.

The set Q°(X, #) contains » and is closed in X. We call Q*(X, z)
the quasi-component of order a. Thus the quasi-components are quasi-
components of order 1. We can observe that if X is connected, then all
quasi-components of each order of X are equal to X. Conversely, if @' (X, x)
= X for any x € X, then X is connected.

The ordinal

ne(X, #) = min {a: Q*(X, z) = Q*(X, z) for a < g}

is called the non-connectivity index of the spece X at the point x, and it is
not difficult to check that if y = ne(X, x), then @¥(X, x) is the compo-
nent of the point » in X. .

There are examples of spaces whose non-connectivity index is arbi-
trarily high. If, however, X is separable metric, then ne(X, ) is a count-
able ordinal (see [3], § 24, II, Theorem 2).

We say that a topological space is hereditarily locally connected (h.l.c.)
provided every connected subspace of it is locally connected. Let X be
a regular space. We say that X has small inductive dimension equal to zero
at the point p € X provided, for any neighborhood V of x, there exists
a closed-open neighborhood U of z in X such that z € U = V. We write
ind, X = 0. Finally, we say that a mapping f: X - Y is 0-dimensional
provided, for each y € Y, f~'(y) has small inductive dimension equal to zero
at each point of f~!(y).

We first prove two lemmas that we need for the proofs of the theorems.

LEMMA 1. If X is a regular space, and A is a compact subset of X such
that ind, A = 0, then for any open neighborhood G of p in X there ewists an
open neighborhkood V of p in X such that

peVeVec@ and (V\V)nAd =0.

Proof. Since ind,A = 0, there exists a closed-open set C, being
a subset of A, such that p e C < G. Then C and A\C are compact subsets
of A and for each point # € C we have # € Gn[X\(A\C)], which is an open
subset of X.

From the regularity of X we infer that for each 2 € C there exists an
open subset of X, say V,, such that

(1) eV, =V, <@n[X\(A\O0)].
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By compactness of C, we can find finitely many points x,, #,, ..., 2
of C such that C <« V, UV, uU...UV,. Put

V=V,uV,u...Uu¥,.

Then
(2) peCc<cV and V=V, uV,u..u¥, <@.

Now, since C < V, we get '
(3) Cn(V\V) =

By (1) and (2), we derive
(4) (ANC)A(V\V) < (ANC)nTV

= (ANO)N(V, U T,,U... UV, ) = (ANO)N[X\(A\C)] =0
By (3) and (4), finally, we obtain
An(VN\V) = [Cn(P\V)Ju[(A\O)A(V\V)] =0

LEMMA 2. Let f: X — XY be a perfect mapping (i.e., closed with compact
pretmages of poinis) of & regular space X onto a topological space Y and
let § be a non-empty collection of closed non-empty subsets of X such that
the following conditions are satisfied:

(i) indf~'(y) = O for each y € Y;

(ii) the space Y 18 connected and locally connected;

(iii) the conditions F,, F,, ..., F, €& imply the existence of a set
Foey such that Fy <« F.nFyn ... nF,;

(iv) the mapping f|F: F — Y 8 open for each F € §.

Then fINF: NF — Y 8 a perfect and open mapping of (\F onto Y.

Proof. Since F is closed for each F e §, (& is a closed subset of X,
therefore, f|(\& is a closed mapping of (& into Y. If y is in the image of (\F
under f, then f~'(y)nNF is compact. Thus f|(\F is a perfect mapping.
To show that f|(\& is open let x, € (\F and y, = f(#,). Let U be an open

neighborhood of #, in (& Then by (i) and Lemma 1 we denve the
existence of an open neighborhood V of 2, in X such that

VaNg < VNG < U and (P\V)nf'(y,) =9

Since y, is not in f(V\V), we obtain y, e Y\f(V\V) which is an
open subset of the locally connected space Y. So there exists an open
connected neighborhood N of g, in Y \f(V\V) such that

(5) Yo N < I\fI(V\V).
Now, let F' € §; since f|F is a closed mapping, we get
(6) f(VAFR)Nf(VAF) < f(VAF\VAF) c f(V\V).

8§ — Colloquium Mathematicum XXXIX.2
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From (5) and (6) we obtain
(7) NA[f(VAFP)Nf(VAF)] =0

Since @, € (&, we get @, € F for each F e, which together with
xy €V gives @, € VnF, so that

(8) Yo = f(@) ef(VAF) (Fe§).
Now, from the connectedness of N, (7), (8), and (iv), we obtain
(9) N < f(VaF) (Feg).

We will show that N < f(U). Let y e N. Then for each Fe{ we
have, by using (9),

D #f(y) n(VnF) < f(y)nVAF.

Consider the family {f~'(y)nVnF: F e$}. This is a collection of
non-empty closed subsets of the compact set f~'(y) having the finite
intersection property. To show the latest let ¥,, F,, ..., F, be a finite
collection of elements of §. Then by (iii) there exists F, € § such that

Fy< FinFyn... nF,.
Therefore, by (9) we have

ﬂ[f‘ ) AV AF;] = () nﬂ VaF; o {7 (y)a¥n ﬂF,;

fe=1 1=1

> Y (y)nVF, 0.

Thus,

FF'nNVAF #0.
Fe§

We also have

YW oNVaF < f Y (y)nVaNF < f1(y)nT.
Feg§ Fe§

Thus, f~'(y)nU # @, which implies N < f(U). Hence, f(U) is open
in ¥ and the proof of Lemma 2 is complete.

THEOREM 1. If f is an open, perfect and 0-dimensional mapping of
a regular space X onto an h.l.c. space Y, K < Y i8 a connected set, and
Q@ = Q°[f~}(K)] i3 a quasi-component of order a of f~'(K) (where a i3 any
ordinal number), then f(Q) = K and the mapping f|Q is open.

Proof. Since f~(K) is an inverse set, f|f~'(K) is an open, Pel'fect
and 0-dimensional mapping of f~!(K) onto K, which is a locally connected
subspace of Y. To prove the theorem we use transfinite induction on a.
Take an arbitrary € X. If a =0, then the theorem is true since
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Q" [f 1 (K), 2] = f~'(K). Suppose that the theorem is true for each ordinal
B < a. To show that f|Q* is an open mapping and f(Q°) = K (where
Q® = Q°[f!(K), x]), we distinguish two cases:

(i) @ = y+1. Then

Q°Lf(K), 2] = Q"' [f(K), ] = Q[Q"[f(K), «]],

80 Q°[f~1(K), ] is the intersection of all closed-open subsets of Q" [f~}(K), 2]
containing 2. Denote by § the collection of all closed-open subsets of
Q’[f~Y(K), x] containing x. It is easy to check that all the conditions
of Lemma 2 are satisfied so that f|Q° = f|(\§ is open and f(Q°) = f(NF)
= K.

(ii) a is a limit ordinal. Then

Q= N¢.
f<a

So if we put § = {@°: B < a}, then, by Lemma 2, f|Q° is open and
(@) = K.

CoroLLARY 1. If f i8 an open, perfect and 0-dimensional mapping of
a regular space X onto an h.l.c. space Y, K < Y i8 a connected set, and C
18 a component of f~'(K), then f(0) = K and the mapping f|0 is open.

Proof. There exists an ordinal y such that ¢ = Q”[f~'(K)]. Then,
by Theorem 1, f(C) = K and the mapping f|C is open.

THEOREM 2. If f-i8 a quasi-interior mapping of a compactum X onto
an h.l.c. compactum Y, K < Y is a connected set, and C is a component of
1K), then f(O) = K, i.e., f 18 strongly confluent.

Proof. Since f is quasi-interior, it can be written as f = ml, where m
is a monotone mapping and [ is an open, perfect and 0-dimensional mapping
(see [4], Corollary 3.1). Then it is immediate that m is strongly confluent
and, by Corollary 1, so is the mapping I. It is easy now to check that the
composition of two strongly confluent mappings is strongly confluent.
Therefore, f is strongly confluent.

The following corollary generalizes an earlier result (see [1] and [5]).

COROLLARY 2. Open mappings of compacta onto h.l.c. compacia are
strongly confluent.

3. An example of an open mapping. In this section we prove that the
assumption in Theorems 1 and 2 that the image space is h.l.c. is essential.
In particular, we show that an open mapping need not be strongly con-
fluent. ‘

Example 1. There exists an open 0-dimensional mapping of a metric
continuum onto a non-h.l.c. continuum, which s not strongly confluent.
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Proof. We begin with constructing a preliminary compactum X',
the continuum X being a quotient of X'. The continuum X will be the
domain of the mapping f.

Let

1 1
D={0}U{; n =1,2,...}U{1+; tn =1,2,...}

and let C be the Cantor ternary set on the interval [0, 1]. Consider the

decompositions
C =A7VATUAY

of the Cantor set, where for » =1, 2,...

1 2 1
A{,‘=Cn{w:0<w<-w:, A;‘:Gn{ :-3—n<€0<‘3”—_1'},
2
A.;l = On{m: ?gwgli.

Now consider the subset of the xy-plane and the decomposition

OxD =(0'U0")u G,

n=1
where

C' = {0, 0)}u {(O, %) i=1,2, }, ¢’ = 0 x {0},

hod 1
C, = 4y x {2}u | 4] x {1 +7} UA; x {1},

=]

1 b 1) n»! 1 1
C, = A} x {1 +—}UU AT X {1+—,}u U A7 x {—} UA? X {—}
N) t=n ? i=1 ? n
(n=2,3,...).
This decomposition of O x D is upper-semicontinuous and satisfies
the following conditions:
(i) C, is a closed-open subset of C x D (n =1,2,...);
(ii) 0" = p,(C,), where p, is the projection of CxD onto C
(n=1,2,...);
(iii) O'nC, =0 =0"'nC,and C,nC,, =B (n,m = 1,2, ...;n # m);
(iv) C'v0’ = Lim(,.
n—00
Now, consider the product (C x D)x I, where I = [0,1], and the
equivalence relation R’ in (C x D) x I given by

E = Ull@9,1), @y, 1): @ 9),(@,y) e Cau

U‘((w’ Y, 1)7 (o, :l/', 1)): (z, ), (m’, y') € C"UC"'.
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Let X’ be the quotient space [(C x D) x I]/R’. Then the resulting
space X' is the union of the cones over the sets C'UC"' and C, (n = 1,2, ...).
For simplicity, denote by a, the vertex of the cone over ¢'UC”, and by a,
the vertex of the cone over C, (n =1,2,...). Then

a, = lima,
fn—»00

and X' is a compact metric space with topology inherited from the Eucli-
dean space R®. (The space X will be defined later.) _
The image space Y will be the cone over the Cantor set ¢ = C"
with vertex a,.
Next, we define an open mapping f' of X' onto Y as follows: If
p.1: C x D — (C is the projection onto C (which is homeomorphic to C'’), let

p,Xid: (CxD)xI—-CxI

be the product of p, and the identity of I onto I. Then p, X id is an open
mapping as the product of two open mappings. We define a mapping
f: X'>Y of X’ onto Y by

Flp) = (p.xid)(p) i p #e (1=0,1,2,..),
ay ifp=a (:=0,1,2,...).
To show that f’ is an open mapping it suffices to prove that if @
is an open subset of X', then f'(@) is an open subset of ¥. We distinguish
two cases for the set G.

Case 1. @ does not contain any vertex a,, a,, ay, ...

Then f'(G) = (p, X id)(G) and, therefore, f'(G) is open since p; X id
is an open mapping. ,

Case 2. @ is an ¢-ball around a, for some k€ {1,2,...}.

Then @ is the union of rays starting from a vertex in @ (it is possible
that G contains more than one vertex) each one of diameter less than or
equal to e. From conditions (i) and (ii) we infer that since p,(C;) = €'/,
we have

(P, Xid)(C, x I) = 0" X I.

Therefore, f' maps the cone over C, onto Y. Consequenfly, there
exists a d > 0 such that f'(@) consists of rays starting from f'(a,) = a,
and has diameter less than or equal to 4, and each ray in Y starting from a,
has an interval of length at most 8 in f (@) (one end-point of all these seg-
ments will be at a,). Thus, f (@) is an open subset of Y.

Now, we are ready to define the continuum X and the open mapping f
of X onto Y. Let R be the equivalence relation in X’ given by

B =((f)'1(1, 0,01 (f)'[(L,0,0)])V{(p, p): p € X'}.
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!

Then X = X’/|R is a continuum. Let ¢ be the natural projection
of X’ onto X. Define a mapping f: X — Y by f(») = f'(«’), where &' € X’
is such that ¢(2') = =. It is easy to check that f is a well-defined mapping
of X onto Y such that f’ = fp. But the class of open mappings has the
composition factor property (see [6], 5.15), and since f’ is open, we conclude
that f is open. The map f is 0-dimensional, since f~!(y) is countable for
each ye Y.

Finally, we prove that f is not strongly confluent. For this let B
be the Knaster-Kuratowski biconnected set (see [2], p. 241) in Y. Put
K = B\{(1,0,0)}. Since B is a connected subset of ¥ and the point
(1, 0, 0) is different from the dispersion point a, of B, we infer that K is
a connected subset of ¥. Consider the preimage f~!(K). It consists of
countably many non-degenerate connected quasi-components each one
lying on the cone over some C, (n =1,2,...) and of a non-connected
quasi-component @, lying on the cone over ¢'UC”. The set @, has a non-
degenerate component on the cone over C’’, which is mapped onto K.
It also has countably many degenerate components lying on the cone
over C'. None of these components is mapped onto K. Thus, f is not
strongly confluent.

Remarks. 1. Example 1 solves in the negative the problem raised
by Professor A. Lelek, which was mentioned in the introduction of this
paper.

2. In a discussion with the author, Professor A. Lelek asked the
following question:

Let f: X — Y be a mapping such that, for each subset Z of ¥, each
point z of Z, and each point x € f~!(2), we have f[Q*(f~(2), )] = Q*(Z, 2)
for each ordinal a. Do H-confluent mappings have this property?

It is easy to check that mappings with the above-mentioned property
are H-confluent and strongly confluent, but the converse is not true.
In Example 1 we consider an open, hence H-confluent mapping which
does not have this property. Namely, if Z is the connected set K of Exam-
ple 1, then f~'(Z) has countably many quasi-components of order 2,
which are degenerate.

3. The conclusion in Theorem 1 that the restriction of the mapping f
to a quasi-component @ of the preimage of any connected set K is also
open may fail without the assumption that the image space is h.l.c. To
prove this let K be the connected set of Example 1 and let @, be the
quasi-component of f~!(K) lying on the cone over C'UC”. Then the re-
striction of f on @, is not even a quasi-interior mapping of @, onto K. To
see this let ¥ be a point of K lying on {(0, 0)} x I and different from the
vertex a,. Then f~!(y) has countably many degenerate components.
Let D be one of these components lying on the set {(0,1)} X I. Let U be
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an open neighborhood of D in Q, lying entirely on the cone over C'. Then,
clearly, f(U) is a subset of {(0,0)} x I, so y ¢ Intf(U).

4. The following problem can be raised:

Let f: X — Y be an open mapping of a locally connected compactum X
onto a non-h.l.c. compactum Y. Is f strongly confluent?

Professor A. Lelek has constructed an open, light mapping from
a locally connected continumin onto a continuum which is not strongly
confluent, thus solving the problem in the negative.
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