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In this note we shall mean by an algebra </ a pair {A; F), where A
is a non-empty set and F is a class of fundamental operations. Every f
from F is a function of several variables which associates with each
system @, @y, ..., ¥, of elements of A an element f(x,, X5, ..., an)ed.
C(E) denotes the subalgebra generated by a set ¥ cA. By A() (or
briefly A) we shall denote the class of all algebraic functions, i.e. the
smallest class of operations containing trivial operations

n
eM (D, By ooy @n) =8 (K =1,2,...,0; n = y . TN,

and closed under compositions with the fundamental operations. The
subclass of all n-ary algebraic operations will be denoted by A™, =1,
Further, by A® or €(@) we shall denote the set of all values of constant
algebraic operations. Elements belonging to A" = ¢(©) will be called
algebraic constants. We say that the elements of a set I (I = A) are inde-
pendent if for each system of n different elements a,, @y, ..., a, from [
and for each pair of operations f, ge A™ the equation '

flay, gy oovy @n) = gy, gy o.ny )

implies that f and ¢ are identical in «/. We shall denote the class of allinde-
pendent sets of an algebra =7 by Ind («Z). The above definitions in a more
detailed form and theorems concerning them are given in [4] and [5].

In the present paper a condition fulfilled in separable variables
algebras (condition JIS) will be defined, and its connection with exchange
of independent sets property will be examined.

Definition 1. An algebra 7 is called an algebra with separable k
variables (k= 1) if for every pair f, geA™, n >k, there exist functions
foeA® and ¢oe A" guch that the equation

)

(@ Xay ovvy @n) = g(@yy oy vy dn)

is equivalent to the equation

f()(ﬂ’l, ilr-z’ cees wk) — go(dlik_!__] 9 -/n]‘-_*_z, veey mn)‘..‘
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An algebra with separable % variables for all k — 1,2,... will be
called, briefly, a separable variables algebra. The class of separable va-
riables algebras will be denoted by SV.

This notion was introduced by Marczewski in [3]. Obviously, Abelian
groups and linear spaces belong to SV. Generally, one can prove that
a group with multiple operators is separable variables algebra if it is
an Abelian group with multiple operators (the reader will find suitable
definitions in [2]); hence, in particular, it follows that among rings only
rings with zero-multiplication belong to SV. Other examples of separable
variables algebras are given in [1], where also the representation the-
orem for these algebras is proved. Separable variables algebras coincide
with the so-called quasi-linear algebras, as well as with algebras with
separable L variables (see [1]).

In [3] it was proved that separable variables algebras have the
exchange of independent sets property (EIS).

Definition 2. An algebra ./ has the exchange of independent sets
property (o €EIS) if for any three subsets P,Q,Rc A such that
R, Po@Qelnd(L), P~Q £0 and R < C(@), we have P o ReInd(sZ).

For example: Abelian groups, Boolean algebras (and, more generally,
the so-called Post algebras [6]), linear Spaces, and wo*-algebras have
EIS-property (see [3]). Moreover, one can prove that every finite algebra
generated independently by one or two elements has the EIS property.

The property given below is stronger than the EIS-property.

Definition 3. An algebra .# has the JIS-property (joining inde-
pendent sets property) if for any two independent sets P and ¢ such that
CP)~ C(Q) =C(P ~Q) we have P Q eInd ().

We shall prove that this property is equivalent to the tollowing
one:

Definition 4. An algebra ./ has the JIS*-property if for any
two independent sets P and @ such that C (P) ~ C(Q) = C(D) we have
P O Qelnd ().

The classes of algebras having the last defined properties will be
denoted by JIS and JIS*, respectively.

Notice that the condition formulated in definition 3 is a conversion
of the multiplicatibility of operation € on the subsets of the independent
set proved by Marczewski (cf. [5], p. 56). Namely

(M) if P,Q < IeInd(+#), then C(P) ~ C(Q) = C(P ~ Q).

We shall prove successively a few results on the just defined prop-
erties.

(i) JIS = JIS*.
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Proof. Let /¢ JIS and let C(P) ~ C(Q) = C(@), where P and ¢
are independent sets of .oZ. From the obvious inclusion

(1) C(P~@Q) =C(P)n~ COQ)

we immediately get C(P ~ Q) = C(0) = C(P) ~ C(Q), which implies
P o Qelnd (/) and shows that JIS implies JIS*.

Conversely, suppose that o/eJIS*, P,QeInd(s/) and C(P ~ Q)
= C(P) ~ C(Q). By virtue of (1) it suffices to prove that C(P) ~ C(Q\P)
= C(0). Let zeC(P) ~ C(Q\P). Evidently, # must belong to C(P) ~
~C(Q) =C(P NnE). Since xeC(Y\P) and P ~ ¢ and Q\P are disjoint
subsets of the independent set ¢, we infer by virtue of (M) that xzeC(9).
Since ./ has JIS*-property, C(P) ~ C(Q\P) = C(0), and P and  are
independent sets, their union P « @ is an independent set too. Hence
e JIS.

Next we shall prove that joining independent sets property is stronger
than exchange of independent sets property:

(ii) JIS* < EIS.

Proof. Suppose that P v @, ReInd (), P ~ @ =0 and R < C(Q).
From (M) and from the independence of P v @ it follows that C(P) ~
~ C(Q) = C(9). Since, evidently, C(R) = C(@), we also have C(P) ~
A~ C(R) = C(©). Taking into account that P, Relnd (&) and /e JIS*,
we have P o Relnd (/) and thus .« has the exchange of independent
sets property.

Now we shall show that separable variables algebras have joining
independent sets property:

(iii) SV < JIS*

Proof. Assume that P, () eInd(27) and C(P) ~ C(Q) = C(09) (whence,
by (1), P ~ @ = @). One needs to prove that P < @ is an independent
set. Obviously, it suffices to consider finite sets P and (. Let P
= {@y, gy ..., ap} and Q = {by, by, ..., by}. Suppose that P v @ ¢Ind(+7),
i.e. that there are different algebraic operations f and g such that

(2)  flag, @y ..y Qp, biybay.oeybp) = g(ayy @y ...y @y by, byy..ey bn).

Since o7 is an separable variables algebra, there are algebraic oper-
ations f,e A" (o) and g,e A™ (o) such that the equation

(B) J(@yy Bagsroy By Yis Yoy ooy Yn) = G{Prs Pay voey Dany Yin Yy < oo 3 Ui
is equivalent to the equation
(4) Jol@1s @y ooy Tm) = oY1y Yoy o ony Yn).

Thus from (2) we obtain

(D) fﬂ(a’U Aoy o ovy ) = go(bu b27 % & o bn) -
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Denoting the last element by ¢ we have ceC(P) ~ C(Q)), whence.
in virtue of the assumption, ceC(0). In view of independence of P
and ¢ we infer that

Jo(@1, Zay ooy @) = Jo(Y1s Yoy oovs Yu) = ¢

for every @y, @ay .eey Ty Yuy Yoy ---y Yned. Hquation (4) is therefore
always satisfied for any elements of 4, and consequently equation (3)
is too. This contradicts the assumption that f +# ¢, which completes
the proof.

The following theorem is a simple consequence of (i), (iii) and (M):

THEOREM. Let </ be a separable variables algebra and let P and ¢) be
its independent subsets. The wnion P o @ is independent if and only if
C(PAQ)=C(P)~ C(Q).

Recapitulating, we have shown that

SV < JIS — JIS* <« KIS.

Examples of a trivial algebra and a Boolean algebra show that
neither the first nor the second sign of inclusion can be replaced by that
of equality.
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IN UNIVERSAL ALGEBRAS
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G. GRATZER (UNIVERSITY PARK, PENNSYLVANIA, U.S.A.)

1. Introduction. Two different notions of independence are used
in abelian group theory. The classical notion is the following: the
elements a,, ..., a; of an abelian group are independent if

. k
(1.1) Zniai = 0 Implies n; = %y = ... = % = 0;
i=1
hence a single element a is independent if and only if it is torsion free.
In recent papers a new notion of independence (introduced by T.

Szele) has frequently been used:
the elements a,, ..., a; are independent if

k
Eni,a.i = (0 implies n,a, = ... = na; = 0.
i=1

Hence a single element a is always independent (see e.g. [2]).

The first notion is connected with the notion of free abelian groups.

The notion of a free universal algebra was introduced by Birkhoff
[1] and based on this Marczewski [4] gave a general notion of indepen-
dence in universal algebras.

In this note an attempt will be made to generalize Marczewski’s
notion of independence in such a way that when applied to abelian groups
it should be indentical with (1.2).

This will be achieved by defining the order of an element in a uni-
versal algebra.

The basic notions are given in § 2, the order of an element is defined
in § 3 while in § 4 the new notion of independence is given. The charac-
terization theorem of weak independence is proved in § 5. Some of its
consequences and several unsolved problems are listed in § 6.

It should be noted that all the notions introduced in § 2 are stand-
ard ones and are given here only for completeness sake. However, the
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notion of the order of an element — however evident it is — seems to
be new.

Most of the results of this paper were contained in my mimeo-
graphed note [3], which had a limited distribution in 1962.

2. Some notions and notation. An algebra is a couple (4; F) where A
18 a set and F is a collection of fundamental operations. Every operation
JeF is finitary, f = f(w,, ..., #,) (» is an integer and depends on f), which,
means that if (a,, ..., @,) is an n-tuple of elements of A4, then f(a,, ..., a,)
is a well defined element of A.

Let B = A; we call (B; F) a subalgebra of (A; F) it a,,...,a,eB
and f = f(z,, ..., %) eF imply f(a,,...,a,)eB.

Let (4; F) and (B; F) be algebras and h: x —>xh a many-one map-
ping of A into B. The mapping & is called a homomorphism if

f(@yy ooy )b = f(oih,y ...y @ l)

holds identically for every feF. Accordingly, an isomorphism h is a homo-
morphism which is one-to-one and onto (Ah = B); an endomorphism
18 a homomorphism of (4; F) into itself, an automorphism is an isomor-
phism of (4 ; ) with itself.

A congruence relation © on (4; F) is an equivalence relation on A
which has the substitution property:

(SP)if a; =b:(0),i=1,2,...,n, then f(a,, ..., a,) = f(by, ..., b,)(O)
for every feF.

Let A/6 denote the set of equivalence classes modulo @ and a/@
(aed) the equivalence class represented by a. Then (A4 /@; F) is an algebra
where for every feF we put

a0, ..., a,]0) = f(ay, ..., a,)[0. .

The set of all congruence relations on (4; F) is denoted by C(4; F).

Let 0,, 0,e0(A4; F). We put 0, < 0, if = y(0,) implies & = y(0,).
This makes C(4; F') a partially ordered set; it can be easily proved that
the Lu.b.: @, v 0, and g.1.b.: @, ~ 0, always exist. €(4; F) = (C(4; F);
v, ~) 18 a lattice, it is called the congruence lattice of (A; F).

The class A™(n =1,2,...) of algebraic operation of n-variables
is the smallest class satisfying the following two conditions:

(2.1) the trivial operations e defined by €} (x,,...,x,) = «;(i
=1,2,...n) are in A™;

(2.2) it ¢,, ---7ngA(n) and f = f(»,, ooy ) el then f(.‘]l; cees Or)
= FlealBy y sy ByYs » s Gielys s o5 ,)) is also in A™.

Let % be a fixed class of algebras (4; F).
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An equivalence relation on A™ is defined as follows: let f, ge A™;
we write f=g¢ if f(ay,...,a,) = g(ay,...,a,) for every a,,...,a,ed,
(A; F)ex .

Let A% describe the equivalence classes under this equivalence
relation. We can define the operations on A% in a natural way; formula
(2.2) shows that (A%G!; F) is an algebra; this will be denoted by A% .

We put A — 4@ o AW L A® o . and we define an equivalence:
by j =g (fed®, ged®) it for every ay,ay, ..., Gpoxpyed, (Ad;F)ed
the equality f(ay,...,a;) = g(ay, ..., @;) holds. The equivalence classes
will be denoted by A% and the corresponding algebra (A%); F) by A$).

Let H = A; we define the subset [H ] of A by ae[H] if there exists
an integer n, and feA™ and A,,..., h,eH such that f(h,,...,h,) = a.

Then ([H]; F) is a subalgebra of (4; F); it is the subalgebra gen-
erated by H. ‘

If A, B are sets, A — B denotes the set theoretical difference. {a,, ..., a,}
denotes the set whose elements are a,,...,a,. The notation [{a,,...}]
is replaced by [a,...].

3. The order of an element. Let # be a class of algebras, (4; F)e ¥,
aeA. The order of a is defined as follows:

Consider the mapping

6’} — a;
this has a unique extension to a homomorphism & of 2§ into (4; F);
let O(a) denote the congruence relation induced by h; we call O(a) the
order of a.

It is obvious that O(a) is uniquely determined by a, (4; F) and 4.
Turther, O(a)eC(AY; F) = O(AY).

We first give a few examples:

3.1. Let 4 be the class of all additive groups. Then 2§ is isomor-
phic to the group 3 of integers, let ¢; — 1 under this isomorphism. Let
®ex”, ael. Then the mapping 1 — a has a unique extension to a homo-
morphism of J into G. Tt is easy to see, O (a) is the congruence modulo =,
where n is the least integer with na = 1. This O(a) is completely de-
scribed if we give this s, which is usually called the order of a.

3.2. Let # be the class of all semi-groups. Now A% is isomorphic
to N, the (additive) semi-group of positive integers, again ¢; — 1 under
this isomorphism. In this case O(a) can be desceribed by a pair of non-
negative integers (m, n) as follows: ® =y (0(a)) (z,yel) if and only
if 2 =9 or . >m, y >m and » divides x—1y.

3.3. & is the class of all right modules over a ring (&; --, -). This
may also be included in the above discussion in the usual way by making
every element reR correspond to a unary operation f, and put F
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bo |
o |
@

= {-+, fr}rer and considering a right-module M as an algebra (M; F).
Then AW is isomorphic to (R; F) and O(a) may be identified with the
class containing the zero of R, which is an ideal I,. Usually, this ideal /,
is called the order of a.

These examples show that the notion of an order of an element is a
natural generalization of known concepts.

The following propositions show the usefulness of this notion:

3.4. Let (A; F), (B; F)ex and h be a homomorphism of (A; F) into
(B; F),acA.
Then

(3.5) O(a) < O(ah).
To prove this we consider the homomorphisms:
hy: UY — (A5 F); €1 —~ a;

ho: AV > (B; F); €& — ah.
2 H ? ?

Then
hyh = R,

which implies that # = y (0 (ah)) if and only if why, = yh,, i.e. if (@h)h =
— (yh,)h. Thus axh, = yh,, implies @h, = yh,, i.e. @ = y(0(a)) implies
v = y(0(ah)).

A partial converse of 3.4 holds too:

3.6. Let (A; F), (B;F)exX', aecA, beB and suppose O(a) < O(b).

Then there exists a homomorphism

h: ([a]; F') — ([b]; F),

carrying a into b (b = ah).
To prove this consider the homomorphism:

By AQ — (A F), et — a;
hy: AY — (B; F), e} —b.

We define h as follows: let a,e[a], then there exists an a,e A with
6, = ayhy; let a;h = ayh,.

First we have to prove that k is uniquely defined. Indeed, if a,h;, =
= azh, (azeAY), then a, = ayz(0(a)), which implies a, = ay(0(b)),
1.e. Gohy = agh,.

To show the substitution property let feF, f = f(x,,...,x,), take
a,,...,ay,ela]; then

a; = pi(a), pedV, i=1,...,n.
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We want to show

flay, ooy an)h = flayh, ..., ayh).

Let
a;eAD,  ahy=a;, i=1,...,m,
BGAS}!!’ chy = f(@y, ..., ay).

Then

¢ = f(ay, ..., a,)(0(a)),
thus

¢ = flay, ..., a,)(0(b)),
and also

Chy = f(ayy ..., @) hy
Thus

Flseoos )l = hy — [(ahy ey @)y = f(a1ha, .., dhy)
== Pyl s s 5 BB

It should be noted that 3.6 is new only in this form. In faect it is
a special case of the so called Second Isomorphism Thecrem, which is
a part of the folklore.

3.7. The order of an element (a, b), in the direct product of (4; F)
and (B; F), can be computed as follows:

(3.8) O(a,b) = O(a) ~ O(b),

if (A, F), (B, F) a,nd (A X B, F) are in 1.

Let Py, paeAY. (3.8) means that p, = p,(0(a, b)) if and only if
p = p,(0(a)) and p, = p,(0(b)). Since p, = p,(0(a, b)) means P1((a, b))
= 2((0, b)) and so on, we get that we have to prove the following:
pil(a, b)) = ps((a, b)) if and only if p,(a) = py(a) and py(b) = p.(b),
which holds by definition.

4. Imlepende‘nce and weak independence. Marczewski’s notion of
independence is defined as follows:

4.1. Let 2 be a class of algebras, (A; F)er", a,, ..., a,eAd. We say
that the sequence a,, ..., a, is independent if

Py, oy @) = Po(@ry ..oy @)y Py, pzfA(n)s
imply
P1 = Po-
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It may be remarked that Marczewski’s definition is restricted to
the case when " consists only of (4; F); some of his results, however,
remain true for an arbitrary class . The characterization theorem of
independent sequences is the following:

4.2. Let ay, ..., 0,e A, (A; F)ed . Then the following conditions are
equivalent:

(4.2.1) ay, ..., ay is an independent sequence;

(4.2.2) let by,...,byeB, (B;F)edX and p: a;—>b;,, i@ =1,...,n.
Then p can be extended to a homomorphism of ([ay, ..., a,]; F) into (B; F);

(4.2.3) the mapping p: e; — a; can be extended to an isomorphism h
of AL onto ([ay, ..., a,]; F).

The equivalence of (4.2.1) and (4.4.2) is stated in [4]; T am sure
that Marczewski knows that they are equivalent to (4.2.3) as well, how-
ever, I cannot give a reference.

An important corollary of 4.2 (which is also due to Marczewski) is:

4.3. If a,, ..., a, is independent, then so is Wiy -y Wy Where j —i;
s any permutation of 1,...,n.

Thus we can speak of an independent set a,,...,a,, because the
ordering does not matter.

4.4. An element a is independent if and only if a is torsion free, i.e.
O(a) = .

This is trivial by (4.2.3) and the definition of O(a).

Now we give the definition of weak independence.

4.5. Leta,,...,a,eA,(A; F)ex'. We say that the sequence a,, ..., a,
is weakly independent if

(4.5.1) Pil@yyoony @) = Py, .oy @), Py, paed™,
imply
(4.5.2) P1(byy ooy by) = py(byy ..., 0y)

for every b,,...,b,eB, (B; F)ex", for which
(4.5.3) O(a;) < O(by), i=1,...,n.

First, let us see some trivial consequences of this definition.

4.6. Suppose a,,...,a, are torsion free elements. Then ay,...,a,
is independent if and only if it is weakly independent.

The difference between independence and weak independence is
condition (4.5.3). However, if O(a;) = ... = O(a,) = o, then (4.5.3) is
no restriction on the choice of the b; and hence in this case the two
notions are equivalent.
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4.7. If A is a subclass of lattices, independence and weak indepen-
dence are equivalent.
Obviously, since in a lattice every element is torsion free.

5. Characterizations of weak independence. We would like to get
a result analogous to 4.2. In order to achieve that we need some nota-
tion. ‘

The algebra 2% is generated by ef,..., ¢, and the subalgebra 2I;
generated by ¢ is isomorphic to 20, Suppose we are given n congruence
relations @, ..., @, of Y. Consider ©; as a congruence relation on 2;.

Take a congruence relations @ of A% having the following proper-
ties:

(5.1) the restriction of @ to 2; is >0, (i =1,2,...,n);

(5.2) AL /O is isomorphic to a subalgebra of an algebra in "

If there exists a congruence relation which is the smallest one having
properties (5.1) and (5.2), then it will be denoted by 26;.

5.3. Let a,,...,a,¢A, (A; F)ex . Then the following conditions are
equivalent:

(5.3.1) ay, ..., a, is a weakly independent sequence;

(5.3.2) let by, ..., byeB, (B; F)ext", and O(a;) < O(b;); then the map-
ping p: a;—b; (i =1,...,n) can be extended to a homomorphism of
(Tayy ..., a,; F) into (B; F); |

(5.3.3) 20(a;) exists and

2[(;!"‘) [ Z0(a;) = ([ayy «-.y A5 ), e; [ 20(a;) — a;.

Suppose that a,, ..., a, is weakly independent and the p of (5.3.2)
is given. Define h as follows:

q(@yy oy a)h = q(byy ...y by)  for every qeA™.

Obviously, » maps [a,, ..., a,] into (B; F). This mapping is well-
defined since ¢y (@, ..., @) = qa(@yy ..y @) (g1, g2 A™) implies by 4.5
that Dby s« on By) = GlDys < ooy Pi)s

The mapping h is an extension of p since a;h = €f(ay, ..., a,)h =
— eg(byy ...y by) = by

Finally, & is a homomorphism. The proof of this is very similar to
3.6, so it can be omitted. :

Thus (5.3.1) implies (5.3.2).

Next suppose that (5.3.2) holds and consider the mapping € — aj;
this can be extended to a homomorphism % of A% into (4; F). Let @
be the congruence relation induced by k. Then @ satisfies (5.1) and (5.2).
Indeed, if we restrict & to 2[;, then we get a homomorphism of 2l; into
(A3 F) carrying e} into a;. Since 2; ~ A%, we get that the congruence
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relation induced by the restriction of h on 2; is > O(a;). Thus (5.1) is
verified; (5.2) is obvious. Now we prove that @ is the smallest one satis-
fying (5.1) and (5.2). Indeed, if @ satisfies (5.1) and (5.2), then consider
(B; F)ex” of which AY)/® is a subalgebra and let b; denote the homo-
morphic ‘image of ¢;. Then by (5.1) O(b;) > O(a;), Thus by (5.3.2) the
mapping p: a; - b; can be extended to a homomorphism k. Since the
homomorphism which induces @ equals the product hk, it follows that
6O < @. Therefore ® = X0 (a;) and we arrive at the isomorphism statement
of (5.3.3).

Finally, suppose that (5.3.3) holds and let p,, p,eA™, p,(ay, ..., a,)
= Pa(@y, ..., a,) and let b,,..., b, be given as in 4.5.

Let h, and h, be the homomorphisms induced by the mappings
e —a; and €f —-b; (n =1,..., n),respectively, and @,, @, the congruence
relation of A% induced by h, and h, respectively.

Then by (5.5.3) @, = X0(e;) and (4.5.3) imply that @, satisfies
(6.1) and, obviously, it satisfies (5.2) as well. Hence by the definition
of 20(a;) we get 0, < 0,.

By the same argument as in 3.6 we get that there exists a homo-
morphism

h: ([@ars ...y 4]; F) = ([by, ..., b,]; F)
such that
ah =b, (1=1,...,h).

Therefore
POy v v g by) = pilayh, ..., anh) = pilay, ..., a,)h
= Pa(@yyeuey y)h = palah, vvoy O] = Palbyywsuy by},

which was to be proved.

The proof of 5.3 is completed.

The only difficult notion involved in 5.3 is that of X0,. It should
be remarked that in case " has special properties X'6; can be more simply
characterized.

5.4. Suppose A" contains the homomorphic images and subalgebras
of algebras in A". Then X0; always exists.

6. Consequences and problems.
6.1. A single element a is always weakly independent.
Proof. Use the characterization given by (5.3.3) and 3.6.

6.2, The elements a,, ..., a, of an abelian group are independent if
and only if Xk;a; = 0 implies k,a, = ... = kpa, = 0.
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In this case AY is the free abelian group on = generators, thus
(5.5.3) gives the isomorphism:

([aqy .-, ay]; +) :Z ([a'i]§ +),

which is equivalent to the statement of 6.2. The same result is true for
an arbitrary module over a ring.

6.3. In lattices independence and weakly independence is the same.
Thig is true by 4.6.

6.4. If ay,...,a, @8 a weakly independent sequence, then @; , ..., a;,
is also weakly independent, where iy, ..., i, 18 any permutation of 1,..., n.

Thus we can speak of a weakly independent set I, which in the
finite case means that any ordering of I gives a weakly independent
sequence while in the infinite case it means that every finite subseb
of I is weakly independent.

A basis H of an algebra (A4 ; F) e is a set which is weakly independent
and generates (A; . F).

6.5. To every integer n there corresponds a class % and an algebra
(A3 F)ed such that (A; F) has a basis of k elements if and only if k<n.

Let Py, Pay---, Pn be distinet primes, €; = (C;; +) be the cyclic
group of order p;, € = XC;, # = {€}. Then X is effective in 6.5.

One of the unpleasant surprises about weak independence is that
it is possible that a,,...,a, be independent and a,e[a,,...,a,] as it
is shown by the following example:

6.6. Let A = {a,, a}, F = {f, g} and f(a,) = ay, f(a;) = a;; g(a,)
— @y, g(as) = ay, and A = {(4, F)}. Then A consists of three ele-
ments @, y, ¢ and f(z) = f(y) = f(2) =2 and g(2) = g(y) = 9(2) = y.
It is easy to see that # = ¢(0(a,)), while # # 2(0(a,)) and z = y(0(a,))
while 2 % y(0(a,)). Hence neither O(a,) < O(ay) nor 0O(a;)= 0(a,)
hold. Therefore, the only mapping p satisfying the assumption of (5.3.2)
is p: a, - a,, @, —> ay, whence a,, a, is an independent sequence and
ajelas], asela;].

Some of the problems, which arise very naturally, are the fol-
lowing:

ProsrLEM 1. Let #,, #4,... be a (finite or infinite) sequence of
integers. Construct a class # and an algebra (4; F)eX such that (4; I)
has a basis of k elements if and only if k¥ = n; for some ¢ (P 602).

ProsrEM 2. Let A be a set and J a hereditary family of finite
subsets of A including all one element subsets. Prove the existence of
an algebra (4; F) (with # = {(4; F)}) such that a subset in (4;F)
is weakly independent if and only if it is contained in J (P 603).
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PrOBLEM 3. Is it possible that an algebra without constant algebraic
operations has a finite and also an infinite basis? Even if F is finite
(P604)?

PROBLEM 4. Find sufficient conditions on the class # under which
@yelay, ...y a,] implies that a,,...,a, is not independent and not all
elements are torsion free (P 605).

ProBrLEM 5. Prove that if " is an equational class of algebras with
anullary operation that determines a one-element subalgebra in every
algebra in &, and a,,...,a, is independent if and only if [@yyeney @]
= [a,]X...X[a,], then # is equivalent to the class of all modules over
a ring. (If this is not the case, what additional conditions are needed ?)
(P 606)

PROBLEM 6. Work out the notion which corresponds to the notion
of p-rank in Abelian groups (P 607).

Remark. The role of elements of order p should be taken by ele-
ments whose order O(a) is a dual atom in €(AY; 7).
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