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REMARKS ON n-GROUPS AS ABSTRACT ALGEBRAS
BY

B. GLEICHGEWICHT axp K. GLAZEK (WROCLAW)

1. In this paper we shall denote by 2 = <(4; F) an algebra, i.e.
a non-empty set A and a class F of fundamental operations consisting
of A-valued functions of several variables running over 4. For F
— {f1, f2 ---3 fu} We shall also write <4 ; fi, fa2, ..., fa>. A(2), or briefly A4,
will denote a class of algebraic operations of the algebra 2, that is the
smallest class containing all fundamental operations and all trivial oper-
ations e (@, By ovoy @) =@ (K =1,2,...,m30n =1,2,...), and closed
with the respect to compositions. A™ () (n =1,2,...), or briefly A™,
will denote a subclass of A (2) consisting of all algebraic operations of n
variables. Further, by A® we shall denote the set of values of constant
algebraic operations. Elements belonging to A will be called algebraic
constants. Two algebras A = (A; F,> and B = {(4; F,> will be treated
as identical if A(2A) = A(B).

All the definitions formulated above are to be found in Marczew-
ski’s papers [4] and [5], where one can also find some related results.

Dérnte has introduced [1] the notion of an n-group, which is a nat-
ural generalization of the notion of a group. They were investigated
by Post in [7], who calls them polyadic groups.

By an n-group we mean a set G with an n-ary operation defined
in ¢ which satisfies the following conditions:

1° for all @, Xy, ..oy Ly Bppry o ooy Ton_1€G,
f(f(wu Fay vey Pn)y Pnpry Pngay «ooo *'17277.-1)
:f(mlaf(mé7 Ly eery Py Bngr)y Tagay -ee mm—l)
— e :f(ﬂ’)l, :L'2_, e ﬂ’;‘n_l,f(.fﬂ,,” .’L‘n+1’ ...,mzn__l));
20 for all By, By, .eey i1y Bipqy eeey LpelG (1 =1,2,..., n) there exists

precisely one element wx;eG such that

@1y oy oooy X1y Biy Bigqy eevy Tn) = Xy-
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We shall call condition 1°, which is a natural generalization of the
associativiti in a group, the associative law in an n-group. Condition 2° is
a generalization of the solvability of equations ax = b and ya = b in the
group, and it defines » operations ¢; (i = 1,2, ..,n) inverse relative
to f in @.

In particular, a 2-group is just a group. A special case of n-groups
form also Priifer’s Schar [8].

It follows from the definition of an n-group that it may be conceived
as an abstract algebra & = <G;f, 9., g2, ..., g»> With n--1 fundamental
operations.

1f the operation f is symmetrical, i.e. invariant with respect to all
permutations of arguments, then the n-group is called an abelian n-group
(see [1]).

An element Z which satisfies the equation

(1) f(xama-'-ym:&_’):a’

is called skew to .
One can prove that

(2) flw,2y...,2,%) = f(z,,..., Z,r) =...=f(#,=,..., v, o),
and that
(3) fly,z,...,2,...,2) = f(w,..., 7, cey Xy Y) =Y
for all #, yeG, where ¥ can appear at any place under the sign of the
funection f.

It is possible to examine operations of m variables in Nn-groups,
where m >n and m = 1(mod(n—1)), which are superpositions of the

operation f. They have been called by Dérnte long. products. By the
associative law, two long products in which the same arguments appear
in the same order are equal. The sign of the function f in a long m-ary
product appears (m—1)/(n—1) times.

By a power of an element x we shall mean

(i) " = hy(@, 2, ..., 1),

where £, is a long product of k arguments (obviously), & = 1 (mod (n—1)),
or, respectively, =% is an element satisfying the condition

(11) kz(w"",w,w,...,w) == 3,

where k is the positive integer and 7, is a long product of k-2 elements
(k=42 = 1(mod(n—1))).
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It follows from the above that # = 2", (z) = & 2" ete. Oper-
ations on powers are executed as for nusual powers. The set of all powers
of a given element x of an m-group forms the abelian n-group called
a cyclic n-group generated by = [1].

2. The theorem below gives a possibility to define, for n >2, an
n-group with the aid of another set of axioms.

THEOREM 1. A set G with an n-ary operation (n > 2) satisfying the
associative law is an n-group if and only if for every xeG there exists an
element ZeG@ such that for any yeG the following conditions are satisfied :

(4) f(i,a:,...,:zr,y)———f(y,a:,...,w,s?):y,
(D) f(m,:?,...,m,-y)=f(y,a:,...,:2,cv):y.

Proof. It is well known that (3) follows from axioms of an n-group
with an arbitrary localization of # under the sign of the function f, which
implies, in particular, (4) and (5). Moreover, z is uniquely defined.

Now let us suppose that G is a set with an associative n-ary operation
and suppose that for every we@ there exists an element Ze@ such that
for every ye@ conditions (4) and (5) are satisfied. One needs only to
prove that any one of the equations 2° is uniquely solvable in ¢. For
that purpose let us examine the equation

(6) f(wuwz’--‘:mf—u57“"’£+1’---9wn)zmo (t=1,2,..., n).

Supposing that it is satisfied for a certain &, we have by (6)

(7) f(ii—d’ i1y ooy Pi_yy Ti_gy [(Bi_gy ..., Ti_oyXi_3, Xi_3,

n—2 n—3

f(rf(nf(mlr -”"Dlyf(ml:mm ey Mg, E’mm-lv ooy Tn)y Tpyoeey By,
—— —

n—1 i—2

.f(a"ﬂd Le ey ‘[l"fl«!i’il);l:n—l’ "'7wn—1’f(','vn—-1, "'7‘12’!&-—17%”—1’ "‘Lf("'?f("'

n—1q i—1 n—7i—1
eves J{Bsas Towms Orpn 5 vas s BpgaJeweJows ]I wode wad)]
n—2 n—2

: f(fi-—u Li_1yeeey By, Ei—z’f("ﬂiaza ceey Wi_gy ZEi—?.a wi—a;f(' : 7f( g
n—2 n—3

-'7f(w17 "'7‘7}1)5["07 Ly, ---7‘”n;f(w'n7 "',mn7zz'n’wn—la '”"’En——l’f("':f(--'
n—q 7—2 n—1 1—1

7f(m'1'1'-29 5?24-2’ ity «oo9 Pipq, E’H—l))))) ce)ee ))) e

n—-2 n—-2
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Put

Yy :f(mn—la very Pp_1y Tp_1y 7f(7f(

n—g—1

oy S(@igay Bisay Bigny oovy Tigay Tig)eoe)-e))-

n—2 n—i—2

In view of the associative law and (4) we have:

, ‘ ) & . /
f((??l, ...,.,Ul,f(‘.’(/‘,,y’l;'g, ey Hg_qy 573-'7%-;-15 --'vmn)"ﬂn’ ceey Ly
n—1

1—2

f(wn’ cery @y Ty Lp_1g ovy Tp_1y v))

n—1 i-1
= f(@1y eeey @yy f(@y, f(@r, Pay ovny Bs_1y & Tigrynny Tn)y
Nn—1—1

By wo 5 3 Broy Bl g Doy 5 v y Bipys 4D

n—2 i—1

= f@y ooy Bps [y D1y Bay ooy Biqy &y Ligry ooy Tp_gy
n—i—1

f(mn—ly wny *** w'n, in)), "E'R«—l’ "'7xn—~17 y)

n—1 i—1

= f(@yy vy @y, f(@ry Byy Doy ooy Bisqy &y Ligry oevy Bnzy Tn_y),
n—i—1

Dpyyesoy Ln_zyY)-
i—1

Repeating a similar reasoning » —1i times we get

S, ---1w13f(9917$27 cooy By 1y Ey Xipryoeey Bn)y Lnyooey Ty
e — s’
n—1

1—2

f(mnv ey Ly fn,wn-—la ---7377—17f(---5f('--af(mi+27 sza

n—1 i—1
Zigry ooy Ligrs Tigy)eeo)e2))) = fl@y,y ooy &4y Boy ooy iy, &)
n—2 n—1 n—i-+41

Analogously, we also have

F@Ei_qs By_yseees B vy Ty_ny J(@i_nyeeey Bi_gy By_3, m’i—B?f(""f("'

n—2 n—3

"'7f(971a ceey Mgy Loy ooey Ty, E)')))) = &.
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And now it follows from (7) that

(8) E :f(fi—la Li_1g eeny Li_y, fi—zyf(“’i_za ceey Wiy ‘_ﬁ‘i——h i3,

n—2 n—3
FloagFloaeg J(rgeeey®yy®oy Bpyoeey @y (Bpyeeey®pyTpy Lp_19+007 Pn_q;
— e’ e e
n—1 -2 n—1 i—1
JCoos Flo o f(@isay Tigay Tigay o ooy Tigas Tig)ee)er)))enn)enl))).
n—2 n—2

One can likewise verify the fact that the above obtained & satisfies
(6) by making use of the associative law and of formula (5). If (6) pos-
sessed one more solution #», then repeating the above calculations we
would obtain & =y.

It follows from the just proved theorem that an n-group (n > 2)
can be also conceived as an abstract algebra with the following funda-
mental operations: one n-ary operation f and one unary operation
(taking the skew element) satisfying 1° and equations (4) and (5), i. e.

® = <G5f:_> ={G;fsG1y oy ooey Gn)-

3. If @ is an n-group, then the set G taken with m-ary long product
can be viewed as an m-group. We call any m-group isomorphic to that
obtained in this way from an n-group, where m >mn, and m = 1(m0d
(n—l)) reducible to an n-group. The m-group will be said to be irredu-
cible if it is not reducible to an wn-group for any » < m. Dornte [1] has
proved that for every = there exists an irreducible n-group. One can
observe that we have

THEOREM 2. If an wm-group O, = @;f, D> is reducible to an
n-group @, = (G; g, 9>, where n > 2, then A(B,) < A(B,).

Proof. Indeed, it suffices to show that the operation of taking the
skew element in &, (z — 7)) is a superposition of operation g and that
of taking the skew element in B, (v —z'?). Let g be an n-ary operation
and f be an m-ary operation with m = k(n—1)41. Then one can de-
scribe f as the superposition of operation g in the following way:

(D)  Flyp svey Sn)

= g(g(ee. g(g (@19 «o0y @n), Ly "'7w2n—1)”')a"m.~n+2: ooy Bpm).

Let
(10)  fi(y, ..., a’m—i(n—l))
= g(g(er g(@1y ovy @n)e o ) B (ipym—1)41s -+ -9 Pm—i(n—1)) s

where ¢ =1,2,...,k—1.
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From equation (2), which takes the form of z = f@", », ..., 2), we
calculate 2, Suppose that k <~ n—1. Then by (9), (10), (1), and (3) we get

m md =@)
g2, 39, ..., 79 x,..., 2)
k+1 n—k—2

== g(f(’i(f),:r, v s 3o By T '--15?(3)7‘”’ ey @)

k-1 n—rk—2
= g(g(... 9@, &, ..., 2)..)2, ..., 2),7?,..., 29, 2, ..., @)
k+1 k1

—f v o VL) / v " v a
= g(g(fl(x()a Ly.oouy®),y 2, -"7'17)"7_5(0); -“71’(0)7‘1'7 ceey @)
M—T 1 Tr1

=g9(f1@", 2, ..., @), 9@, ..., 2,0, 7D, ... F) x, ... x)

8
= g(fi@ 2, ... @), 2,79, ..., Z &, ..., 2
W

=g(g(fo(3, 2, ..., 2), 2, ..., 2), 2,3, ..., 89,2, ..., 2)

W T
=g(f2(§m7w7 vesy @), @y glo, "'7a7ai(g)):§(g), ---’57(0)7'1’1 ceey @)
N ———
k—1

— g(fz(imyma ey &)y @, af},fl_:(g), '--9§(g)9w’ sy ®) = ...
k—1
= 9(frs @, @, ..., 2),®,..., 2, 7, T, B9, 5 0005 )
2n—1 k-2
= g(9(fir (@), @, ey @)y By ey D)y By oeny @, T, B, F0, 2, .., 2)

— e
k—2

= g(fror@, 2y ..., 0), 2, ..., 0,70, D, 2, ... 2
S — '
"1
=g(g(@", 2z, ..., ¢0),xy..., 2,0, 79, 2, ..., x)

e e
k—1

—(f - -
=g@" 2,...,2,9(,...,2,79), 539, 2, ..., 2)
N
k-1
=g@N, 2, ..., 2,59 2,...,2) =z,

— —
k

Therefore we have
F0 = g(@, 2@ ..., 79, w, ..., 2),

and so A(6,) < A(8,).

Generally, let [(k—1)/(n— 2)] denote the integral part of (k— 1)/(n—2).
Then 2 <k—(k—1)/(n—2)+1< n—1, and, as above, we obtain from
(2) the following relations:
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g(g(...g(g(a},ilg), “.,w(ﬂ),ﬁ(ﬂ)’ .“’5(9))’ ---)’Ew)’ '-'ai(y)ya’y ceey &)

—1 k—1
=)+ B
=g(g(... g(g(f(im; By .eny @), T, RRP) E(g))ri_ﬁw): veey By L)
Nre——, c—
k-1
|a=s] +
20, ..., 29, 2,...,0) =glg(... g(g(g(... (9@, 2, ..., 3), ...), 2, ..., @),
k=1 k—11
k— |.73—~—2_I +1 [n-zJ k41
29, ..., FD),..),789,...,39,2,...,0) =37,

Thus A(B,) <« A(B8,), q.e.d.

Obviously, if an m-group &, — (G;f,”) is reducible to a group
®, = G;-,7', 1), then = & ", and so also 4(B,) = A(B,).

We note that z@ — 2> "™ = g!**0="_ \which, by Theorem 2,
shows that the powers with negative exponents defined above are alge-
braic operations in an n-group. Owing to this, to Theorem 1 and to the
definition the powers in an n-group we obtain

CoROLLARY 1. The algebraic operations of one variable in an n-group
are just powers x', where q = l(mod(n——l)).

It is proved in [1] that an m-group is reducible to a group if and
only if there exists an element » in it such that for any 2 we have

(11) f(TaTy---’Tvmr"_‘a---77'):wa

where # may appear at any possible place.

Dérnte has not given any conditions for an m-group to be reducible
to an m-group. We shall prove below a kind of a criterion in a certain
peculiar case.

THEOREM 3. An m-group G with m = n-+k(n—1)* (k =1,2,...) is
reducible to an n-group, where n > 2, if and only if there exist in G elements r
and s such that for arbitrary xy, ®,, ..., 2, G we have

(12)  Flwys Bay » 500 D) =Tl flayy Ty vomy Py By cong Trg 500y Ty 8y By

.
(n—1)k+1 n—1 7n—1
I
..... Lo T's ry s ) s P 8y W)y ¥y sing¥y 8 g By oweey Ty Sy By win
n—1 1 1 no 1 71
I3 ;i
R N IS o Pl w5 my Py B s Doy oo v =l
e mm——— e —— e mme— e
n—1 n—1
I3
J ;158 } s ¥y 8y By mans )
e e e e
n-—-1 -1
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where systems of elements 1,...,7,s are inserted between elements z; and
Tigg (0=1,2,...,m—1) k times.

Proof. First we note that the expression on the right-hand side
of (12) is a long product in an m-group, because there are there
m~+(n—1)k(m—1) = 1(mod(m—1)) arguments and every function f
hags n+4k(n—1), i. e. precisely m arguments. Let &, = @;f, ">
be an m-group reducible to an n-group &, = (G;g, ?>, where g is
a G-valued function of » variables running over @ (it needs not to be
an algebraic operation in &,). Since m = n-+k(n—1)2, the operation f
can be represented, by virtue of the associative, law as a superposition of
operation g. Thus, for instance, the following long product is well de-
fined :

(13) f(@y, Boyeeey Tm) = G(g(...(g(2q, vouy®p)y Bpigy coey Boapoq) goes)
A

‘-U(Ic—l)(-n—l)+27 wasy mk(n_1)+1)p ceey g(- o (g (mm—k(n— 1)—29 =+
k

T (k1) (m—1)—1) 3 ++*) Bm_ng1s -3 Tm_1) y Tm) -

Therefore we have

(14) flzy, r, ey Py Sy Ty ey Py Sy gy Py 8y Wy ey By
n—1 n—1 n—1
k
Fyoeasy8yueey¥yeeey 8, 2) = g(G(ce(g(@, 7y oiey?y8)y ¥y, 7,8),...)
n—1 n-1 k -1 n—1

k

Fyoeas T3 8y ey Gleee(G(Bugytyeis 7y 8)y Ty ¥y 8)you)lyuun, 1, 8), &).
—————

| ———
n—1 k n—1 n—1 n—1

Replacing now r by any element of <G;g, > and s by the ele-
ment =@ gkew to 7 in &,, we get, by virtue of (3) and (14),

S I , —(a) e ()] e ()
(18)  f@1y 7y eyt ™Dy i@ ey, D e By,

| ey - ey
n—1 n—1 n—1
k
. P (4 ” e (I »
Fywens 'y ¥ oy, @ ) = gy, 2y ...y By).
e 2 30—
n—1 n—1

]‘-

Iterating this procedure on the right-hand side of equation (12)
we check, in view of (13) and (15), its validity.

Conversely, let condition (12) be satisfied in an m-group &,, where
m = n+k(n—1)>. We define in G a new n-ary operation (it needs not
to be algebraic) by formula (15), substituting in it everywhere element s
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instead of 7@. As it is known from [1], &, with the n-ary operation defined
by (15), is an n-group. Considering in it the m-ary long product appearing
on the right-hand side of formula (13), we get, by virtue of (12) and the
association, equation (13). The proof is complete.

Now we shall prove a

LEMMA. An n-group G, = (G;f, > reducible to a 2-group G
— (G, 7Y 1> is a group (i e. A(B)) = A(By)) if and only if it contains
an algebraic constant.

Proof. As it is known a necessary and sufficient condition for G,
to be reducible to ®, is the existence in @ of an element 7 satisfying (11).
[n such a case we have r =7, because r = f(r,...,7) =f(r,..., 7).
Hence and from (4) and conditions (i) and (ii) defining the powers of
the element we infer that »* =r for ¢ = 1(mod (n—1)). Let &, contain
an algebraic constant ¢. Then there exists a unary algebraic operation g
such that g(») = ¢ for every x. Since, by virtue of Corollary 1, the only
unary algebraic operations are the powers 27, where ¢ = l(mod(n—l)),
we have 2”7 = ¢ for a certain p and every z. In particular, r? = ¢. Hence,
the element » being idempotent, it tollows that » = ¢ (and ¢ is the only
algebraic constant in &,). The operation

woy =f(w,¢,6y...,¢,Y)

is an algebraic operation (as the superposition of ¢ and f), and it is, as
it is known from [1], a group-operation. The element ¢ is a unity of this
group, and the element y from the equation f(xz,c,¢,...,¢,y) = ¢ can
be expressed, in view of Theorem 1, by elements x and ¢, as a superpo-
sition of operation f, and the taking the skew element. Obviously, set ¢
with the operation o is a group isomorphic to the group ®,. Forming
now an n-ary long product we obtain the n-ary operation that we have
started from. Thus fundamental operations of the algebra &, are con-
tained in the set of algebraic operations of the algebra &,. Since A4(®,)
= A(®,), we have A(6,) = A(B,).

We have thus proved that the condition is sufficient. The necessity
is instantaneous, for the unity of the group @, is an algebraic constant
in ®,.

TurorEM 4. If an m-group &, = (G;f, ~> has an algebraic constant,
then it is a group G, = (G;-, ", 1D.

Proof. Let ®, have algebraic constant ¢. Then there exists an in-
teger q (¢ = 1(n10d(m—~1))) such that 2?2 = ¢ for every . In particular,
A =¢ and ¢ = @)= (™) = (%)™ =" =¢. Therefore ¢=rc,
and, by virtue of (11), we infer that ®, is an m-group reducible to the
group in which the binary operation xy is defined by the formula xy
— f(x, ¢, ..., e,y). It follows then by the Lemma that @, is a group.
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Now we give an example of a 3-group reducible to a group not hav-
ing any algebraic constant.

Let (K;-,~',1> denote the foury Klein’s group. We consider K
with the long product

By Xy 3 = (@), Xy, X3).

Since the Klein’s group is abelian, ¢ is the symmetrical operation
and © = {K; o, ") is an abelian 3-group. It is quite easy to verify that

a@,y,2) ¢lw,y,2} for @ Fy £z tw
and

N Y, Y) = a5 B =a.

The 3-group © was considered by Swierczkowski in [9] (see also
[5]). We have here A9 (S) = 0.

An algebra U is called a separable k variables algebra (k> 1) if, for
every pair f,geA™, where n >k, there exist operations f,eA® and
Joe A" such that the equation

@y, @y ooy @) = gl@y, @, ..., 3,)

is equivalent in 4 to the equation

Jo(@y, Lay eeey Tg) = Yo @i,y Dhoygy ooy ly).

An algebra with separable k variables for every k=1,2,... will
be called briefly separable variables algebra.

This notion has been introduced by Marczewski [3]. In [2] a the-
orem on the representation of these algebras has been proved. It turns
out that they are the so-called quasi-linear algebras only (see [2]), and
that the class of separable & variables algebras coincides with the class
of algebras with separable % variables. :

It is known that separable variables algebra contains always an
algebraic constant. A group is a separable variables algebra if and only
if it is abelian. Hence, by virtue of theorem 4, we get the following

COROLLARY 2. An n-group is separable variables algebra if and only
tf it is an abelian group.
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