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ON THE COMPLETION OF PARTIAL ALGEBRARS
BY

P. BURMEISTER anxp J. SCHMIDT (BONN)

Tn the theory of partial algebras (), the full or complete algebras
play a réle somewhat analogous to the rdle of compact spaces in the
category of completely regular topological spaces (2). It might be con-
sidered as the subject of this paper to make this clear. We begin with

1. Partial Peano algebras. All algebras under consideration are of
type A = (K, i.e. we consider algebras (partial or full) (4, f), where
f = (fi)ir is a family of operations f;: D; = A% ~ A (full if D; = A%,
partial in general). (A, f) is a partial Peano algebra of type A on set M
if the usual Generalized Peano Awxioms hold true:

Pl. fi(a)¢ M, for all indices ¢el, for all sequences ael);;

P2. fi(a) = f;(b) implies ¢ =j and a = b, for all indices i, jel,
for all sequences aeD;, bel;

P3. M = A4,
where M (also CM,C M ,C, M, or most exactly Ci4D) denotes the sub-
algebra (closed subset) generated by M < A. Mind that partial Peano alge-
bras are allowed to be really partial, not full as the Peano algebras conside-

red so far (the latter called full Peano algebras to avoid misunderstanding).
As a simple clue to the following, we state

THEOREM 1. In any partial algebra (A, f),

M= Mo | f(M%,
el
for any subset M < A.
Proof. M o\ fi(M%) « M is clear, M containing M and being

() For terminology and notation, ¢f. Slominski [9], [10], [11] and Schmidt [8].

(2) ‘Some analogous results were obtained by A. Wojciechowska in the paper
Remarks on similarities and differences between the categories of topological spaces and
quasi-algebras written in the spring of 1965 at the suggestion of B. Weglorz on a sem-
inar conducted by Dr. B. Gleichgewicht in Wroclaw University. A part of Woj-
ciechowska’s paper can be found in a mimeographed report on that seminar Semsi-
narium 2 algebry (in Polish), Wroclaw 1966, p. 60-73. (Note of the Editors.)



236 P. BURMEISTER AND J. SCHMIDT

closed with respect to fundamental operations. The converse inclusion
follows from the obvious fact that M o () f;(MEY) is closed too.

Hence, the notion of partial Peano algebra may be given without
reference to a set M, due to the

COROLLARY. Let (A, f) be a partial Peano algebra on set M. Then

M = A— U Imf;.

el
One may call M the Peano basis of (A, f). This observation is helpful for

TurorEM 2. Any relative algebra (B,g) of partial Peano algebra
(A, f) is partial Peano (3).

Proof. Since g; = f; ~ (BXixB), P2 is trivial in (B,g). Let N:
= B—|JImg;. We show that (4—B) v C,N = A,i.e. ze(A—B) u C,N,
by algebraic induction on zeA. Let first be weM: = A—| ) Imf; Then
w¢(JImg;, whence zeA—B or xeB—| JImg; = N. Now, consider ele-
ments a,e(4A—B) v C,N (xeK;) and a = fi(a,|xeK;). In case aed—B,
we are ready, therefore we may assume aeB. If a,eC, N, for all x<K;,
then aeC, N, and we are ready again. If a,¢C, N, i.e. a,e A— B, for some
xel(;, using P2 for algebra (4,f), we obtain aeN. Hence ae(4— B) u
v G, N in any case, completing the proof.

THEOREM 3. Let algebra A be partial, B full, ¢ an arbitrary mapping
Jrom abstract set A into abstract set B. Then ¢ is a homomorphism of alge-
bras if and only if ¢ is a closed subset of product algebra A X B (%).

Proof. Let f = (fi)icr, 9 = (gi)ic; be the given algebraic structures
on A and B respectively, let & = (h;);.; be the product structure on 4 x B.
If ¢ is a homomorphism of (4, f) into (B, ¢), ¢ is a closed of subset (AXB, h).
For consider elements (a,, b,)eq (v K;), (a, b) = h((a,, b,)|xeK,); then b,
=¢(a,) (xeK;) and a=fi(a,|xeK;), b=g:(h,|%<I;), hence ¢p(a)=g;(p(a,)]|
xel;) = g;(b,|xeK;) = b or (a, b) ep. It is in the opposite direction only
that the assumption of completeness of algebra B is needed. Let ¢ be a clo-
sed subset of product algebra Ax B, assume f;(a,|xe K;) = a. By hypothesis,
be B exists such that b = g;(b, | =< K;) where b,: = ¢(a,) (¢ K;). Then (a,b)
— h((ay, b,) | xeK;)ep, hence p(a) = b, showing that ¢ is a homomorphism.

This simple “closed-graph theorem” will be used as a nice clue for
the proof of

TuroreEM 4 (Recursion Theorem). Let A be a partial Peano algebra.
Then its Peano basis M is B-independent, for any full algebra B (5).

(®) As a special case, any subalgebra of a (full) Peano algebra is (full) Peano;
cf. Slominski [9], chap. I1I, (1.5), Diener [1], Prop. 10.

(*) In the sense of Stominski [11], § 2B: a full-homomorphism.

(°) For full Peano algebras, cf. Lowig [6], Theorem 2.16, Stominski [9], chap.
III, (1.3) (his proof, though incorrect, might bhe saved), [11], (2.8), Diener [1], Prop. 3;
cf. also Karp [3], 3.3.4 and 8.2.2. The proof given here goes back to Lorenzen [5].
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Le. any mapping f: M — B may be extended to a (unique) homo-
morphism ¢: A — B.

Proof. Let ¢ be the subalgebra § = A x B generated by f < AxB.
According to Theorem 1,

(%) p=pvlJ hi(¢%)

where h; are the product operations as in the last proof. We are going
to show, by algebraic induction on aed: for any aeA, there is exactly
one beB such that (a, b)eg, i.e. p is a mapping from A into B and there-
fore a homomorphic extension of # by Theorem 3. Inductive beginning:
aeM. Since p < ¢, one has (a, f(a))ep. Consider an arbitrary element
beB such that (a,b)ep. By (%), either (a,b)ef, i.e. b = p(a); or (a, b)
— hi((a,, b,) | x<K;), hence a = fi(a,|xeK;), contradicting P1. Inductive
hypothesis: a,ed (xeK;), and there is exactly one b,eB such that
(a,, b,)eq for all xeK;. By definition of ¢, (fi(a,|xekK;), gi(b, | e K;)) e .
Consider an arbitrary element beB such that (fi(a,|xeK;),b)eg.
By (x), either (fi(a,|z<K;), b)ep, hence f;(a, |z K;) < M, contradicting P1;
this leaves

(fi(“u|%€Ki)y b) — h:r'((afj:v b:)]"v'fo) - (f,'('a:[xeK,-), gf(bﬁlxeKi)),

where (a¥, b¥)ep (xeK;); one obtains f;(a,|xef;) = f;(a,|x<K;), hence
i =17, a, = ay(xeK;) by P2, hence b¥ = b, (xeK;) by inductive hypo-
thesis, hence b = g¢;(b,|xeK;), completing the proof.

Let us remark that the existence of partial Peano algebras is trivial:
any discrete algebra A — all fundamental operations of which are empty
by definition — is partial Peano; moreover, the discrete algebras are
precisely the free algebras in the primitive class of all partial algebras.
Various proofs have been given for the existence of full Peano algebras
(of any type 4, on any set M) (°). This existence, together with Recursion
Theorem 4 leads to the statement: the full Peano algebras are precisely
the free algebras in the primitive class of all full algebras, often called
the absolutely free algebras; accordingly, the full Peano algebra of
type A4 on set M is unique up to a unique isomorphism over M
(i.e. extending id,,) and will be denoted P(4, M). By Theorem 2, any
relative algebra of P(/, M) is partial Peano; we shall prove the con-
verse in the sequel.

2. The free completion of partial algebras. Given a partial algebra A,
an extension of A in a very strict sense is any partial algebra B such that A
is a relative algebra of B; then A, the subalgebra of B generated by A

(%) E.g. Stominski [9], chap. III, (1.1), [11], (2.6); other proofs have been given
by Lowig [7], Kerkhoff [4], and Harzheim [2].
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is a minvmal ewtension of A. A completion of A in a fairly wide sense is
afull(complete) extension B of A; then A isa minimal completion of A. Adding
a point co¢ A to set A, there is an obvious “normal” method of making
A o {oo} a completion of A ; this normal one-point completion of A — by
no means the only completion of A on set 4 o {co}! — is minimal if
and only if A is really partial, not full, A being full if and only if 4 is
its only minimal completion, in fact its only minimal extension. For
it i3 by means of this unique (up to a unique isomorphism over 4) normal
one-point completion 4, that one may easily conform the fact that partial
algebra A is full if and only if 4 is a subalgebra of any of its exten-
sions, or of its completions only.

THEOREM 5 (Existence of Free Completions). Given any partial
algebra A, there is a completion B of A, universal in the sense that, for any
full algebra C and any homomorphism y: A — C, there is exactly one homo-
morphism w: B — O extending 7. Completion B 1is unique up to unique
isomorphism over A, and minimal.

We call B the universal or free completion of A, denoted A. It is an
obvious analogue of the Stone-Cech compactification of a completely
regular space.

Proof. By the well-known General Existence Theorem (?) there
is a full algebra B, and a homomorphism ¢o: A — B,, universal in the
sense that each diagram of homomorphisms

Yo

4—————>p
m

N
7_\ ///'PO
0

(C full) can be filled in commutatively by a unique . Taking ¢ = 4,
the inclusion homomorphism x =id,y: 4 — 4 is injective and strong (8);
therefore, as can easily be seen, gp is not only injective but strong too.
General set theory enables us to find a set including set A as a subset,

1d 4
4——"—5p
N4
Yo Fa Q]

N By ¥

(") Stominski [10], Theorem 7, Schmidt [8], Theorem 2.

(°) Stominski [11], § 1A. A surjective homomorphism is strong if and ounly
if it induces the quotient structure (the weakest algebraic structure on its range
such that it is a homomorphism); this is an obvious analogue of the strongly contin-
uous mappings in the sense of Alexandroff-Hopf.
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and a bijection w: B — By extending ¢ (as a matter of fact, » may be
constructed in a canonical way, without using the Axiom of Choice!).
B can be uniquely made a full algebra such that o becomes an isomor-
phism. ¢o: A — By being a strong homomorphism, so is the inclusion
idy: A — B: algebra A is a relative algebra of algebra B, hence B an
extension, even completion of A in the strict sense of real inclusion.
Equally, the universality property of ¢go: A — By is carried over to id,:
A — Bj; the uniqueness of algebra B (up to a unique isomorphism over A)
is an immediate consequence. From the proof of the General Existence
Theorem or from the fact that the class of full algebras is closed with
respect to subalgebras, one derives that extensions B, and B are mini-
mal.

Our main theorem gives an inner characterization of this free com-
pletion:

THEOREM 6 (Axiomatization of Free Completion). Let (B,g) be
a completion of partial algebra (A, f). Then B = A if and only the following
Awxioms of Free Completion hold true:

FC1. gi(b)eA implies g;(b) = f;(b), for all indices iel and for all
sequences be BXi;

FC2. g;(b) = g;(¢) ¢4 amplzes t=4 and b=c fOT all indices i, jel,
and for all sequences beB™i, ¢eB%i;

FC03. 4 = B (completion B is mmimal).

Obviously, these axioms generalize the Peano Axioms P1-P3; as
a matter of fact, one immediately obtains

COROLLARY 1. B s a full Peano algebra if and only if B is the free
completion of a discrete algebra.

Thus, full Peano algebras constitute an analogue of Stone’s space
of ultrafilters on an abstract set.
Another immediate consequence:

COROLLARY 2. A s a partial Peano algebra if and only if its free
completion A is full Peano.

COROLLARY 3. The partial Peano algebras A are precisely the relative
algebras of full Peano algebras B.

Before proving Theorem 6, we have to construct — as is natural

and inevitable for problems of this kind — a special completion of A4
in which FC1-F(C3 are evident:

THEOREM 7. Any partial algebra (A, f) has a completion (B, g) such
that ¥C1-FC3 hold true.

This is a generalization of the Existence Theorem for full Peano
algebras and will be proved with the help of the latter:
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Consider (P, h) = P(4, A), the full Peano algebra of type 4 on
set A. We change the algebraic structure of P by the definition:

[fel®) if f;(b) is defined,
B h;(b) else.

Algebra (£, g*) is full too. Let (B, g) be the subalgebra of (P, g*) gen-
erated by set 4. By definition, f;(a) = a implies ¢;(a) = a; moreover,
if g;(b) = aeA (beB™), then, due to P1, k;(b) # a, hence g;(b) = f;(b):
(B, g) is an extension and therefore a completion of (4, f), and FC1 holds
true, and so, by definition, does FC3. To prove F(2, assume g¢;(b) =
= g;(¢) ¢ A; then by definition 7;(b) = g;(b) = g;(¢) = h;(¢), hence ¢ = j
and b = ¢ by P2, completing the proof of Theorem 7.

We are now ready to prove Theorem 6. First, assume (B, g) to be
a completion of (A4, f) with properties FC1-FC3; we want to prove that
(B, g) is the free completion of (4, ¢g). This is an obvious generalization
of the old Recursion Theorem for full Peano ajlgebras, it will be proved
with the help of our Recursion Theorem 4 for partial Peano algebras.
We change the algebraic structure of B, restricting g¢; to BSi—D;,
where D; is the domain of f;; then (B, h), where h; is this restriction
of ¢;, is a partial algebra, in which P1 and P2 hold true, due to FC1 and
FC2. Still, also P3 holds true, i.e. partial algebra (B, k) is generated by
subset A4, as was, by hypothesis FC3, the original algebra (B, g¢); in fact,
(4 is a subalgebra of (B, g). Hence, (B, k) is a partial Peano algebra
on set 4, and our Recursion Theorem 4 may be applied. Let us consider
a homomorphism y from partial algebra (4,f) into an arbitrary full
algebra (C, k). By Theorem 4, there is a homomorphism v from partial
Peano algebra (B, k) into algebra (C, k) which extends y; as y is not an
arbitrary map, but a homomorphism, one easily checks v to be a homo-
morphism even from full algebra (B, g) into (C, k): (B, g) is the free
completion of (4,f). '

Again, let (B, g) be an arbitrary free completion of (4, f). By The-
orem 7, there is a completion (B’, ¢') of (A, f) such that FC1-FC3 hold
true. As we have just shown, (B, g’) is a free completion too. Hence,
both free completions are isomorphic over 4, and FCO1-FC3 also hold
true in (B, g), completing the proof of Theorem 6.

Note that Theorem 6 and Theorem 7 give another proof of Theorem 5
that is independent of any more general existence theorem.

g; (b)

3. The semilattice of minimal completions. Given a certain partial
algebra A, let B, C be any minimal completions of A. We write

BsC or B~C

if there is a — necessarily unique — homomorphism (or isomorphism, res-
pectively) over A, i.e. extending id 4, from B into — necessarily onto — C.
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Then & is a quasi-ordering in the class of all minimal completions of
A, ~ its associated equivalence relation,

B ~C if and only if B & ¢ and C & B.
Moreover, from the universality property of A,
As B
for any minimal completion B; let ¢p be the unique homomorphism

over A from A onto B, Ry its induced congruence relation on A. By
means of the homomorphism theorem,

B & O if and only if Ry < Ry,
B ~ ¢ it and only if R = Rg;

the classes of equivalent minimal completions of A correspond one-one
with certain congruence relations on A, and the quasi-ordering of mini-
mal completions is just opposite to the inclusion of corresponding con-
gruence relations.

TuEOREM 8. Let R be an arbitrary congruence relation on A. R = Rp,
for some minimal completion B, if and only if

RA[AX(A o (A% =ia,,
iel

i.e. pla) =¢@), aed, wed v | g (A%D), implies a = x, where g; are
the fundamental operations of A and ¢ a homomorphism inducing R.

Proof. First, consider R = Rz, where (B, k) is a minimal completion
of (A,f). Assume aed, ved v | g (A%, gp(a) =gp(x). If ved, a =,
since pp(a) = a, pp(®) =o. It & = g(a,|xeK;), a,e A for all xeK;, we have

a = gp(a) = pp(v) = hi(pp(a,) | x e Ky) = hyla,|xe K;),

hence a = f;(a,|=x<K;), since (4, f) is a relative algebra of (B, k), hence
a = g;(a,|xeK;) = @, since (4, f) is a relative algebra of 4, q).
Conversely, let congruence relation R fulfill the condition of our

theorem. Then there is a full algebra By and a homomorphism ¢, from A
onto By which induces E. By hypothesis, the restriction y of ¢, to 4
is injective, so we may construct a set B including A and a bijection o
from B onto By which extends y:

P

‘%

B

, C
X '
N
B 0

w

T
r

L
P
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B can be uniquely made a full algebra (B, k) such that o becomes an
isomorphism. Then ¢: = w'ogy is a homomorphism from A onto B,
which again induces the given congruence relation R; moreover, the
restriction of ¢ onto A is nothing but id,, hence id, is a homo-
morphism  from (4,f) into (B, k). (A4,f) is even a relative algebra
of (B, h). In fact, assume a = h;(a,|xeK;), a, a,eA(xeK;), and consider
@ = gi(a,|xel;)eA. Then

pla) = a = hy(a,|xeK;) = hi(p(a,) | % e Ky) = @(a);

by hypothesis, « =z or gya,|xeK;) — aeAd. By FCOl, we obtain
a = fi(a,|xeK;). So (B, h) is a completion of (A, f), moreover a minim al
one, since set A generates algebra 4, and homomorphism ¢ is onto algebra B
and cariies set A onto 4. Hence ¢ = ¢p and R = Ry, completing the
proof.

By Theorems 6 and 8, we have a comparatively concrete survey
on the totality of minimal completions.

Note that the condition

RA(AxA)=id,

will not be sufficient in Theorem 8. For let (4, k) be a full algebra, (4, f)
a real partial algebra the algebraic structure f of which is weaker than
the full strueture A, i.e. id, is a homomorphism from partial algebra
(4, f) onto full algebra (A, k), not an isomorphism. There is a homo-
morphism ¢ of the free completion 4 of (4, f) onto (A, h) which extends
id4: for the induced congruence relation R, one has R ~ (A X4) =1d,4.
Still there is no minimal completion B of (4, f) such that B = Rp. For
by the homomorphism theorem, there would be an isomorphism o from
(A, h) onto B such that ¢p = woep,

(4,f) e
¢ [

n 9

(A h) > B

(]

But » would have to be id 4, so algebra B would have to coincide with
algebra (A, h) that is no extension of (4,f) at all

An important application of Theorem 8: let us select a representa-
tive from each class of equivalent minimal completions. By Theorem 8,
we obtain the
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COROLLARY. The representative minimal completions constitute a con-
ditionally complete upper semilattice with greatest element A (9).

Le. for each non-empty family of (representative) minimal comple-
tions B, there is a least upper bound. This is true because for the non-
empty family of corresponding congruence relations Ry, there is the greatest
lower bound, namely the intersection () R,.

As we have stated above, this semilattice reduces to one element,
A itself, if A is full. Let us therefore suppose 4 to be really partial. Then
with certain trivial exceptions, our semilattice is not a lattice. In fact,
let us consider its minimal elements. Clearly, any one-element completion
of A is minimal. For let B = A o {b}, b¢ A be a one-element completion
(eo ipso a minimal extension), let ¢ be an arbitrary minimal completion
of A such that B & (; then there is a homomorphism ¢ over A from B
onto ¢ which cannot but carry {b} = B— A onto C— A4, so ¢ is bijective,
i.e. an isomorphism, hence ¢ ~ B, and B is a minimal element in the
semilattice of minimal completions. Still, if 4 = @ and type A is such
that K; # @ for some index je I, then there are at least two non-iso-
morphic one-element completions of A. In fact, take the normal one-
element completion 4 =4 o {oo} and change its algebraic structure g,
at least the operation g;, by selecting an element a*e¢A and defining

_ _ a* if @, = oo for some xek;,
hi(a,|xeK;) = ,
gila,|xeK;) elsewhere.

Then (4, %) is a one-element completion such that (A, h)w(4,q).
Unfortunately, the situation is of still greater complexity. For instance,
consider algebra (B, g), where B is a set of four elements a,, a,, b,, b,,
and ¢g: B — B is the full operation of one variable defined by ¢(a,) = b, ,
g(b,) =a, (v=1,2). Consider the discrete relative algebra (4, f),
where A= {a,, a,}. Then (B, g) is a minimal completion of (A, f) which
is a minimal element in our semilattice of minimal completions. For let
(Cy h) be a minimal completion of (4, f) such that (B, g) & (C, h); since
Ilp(b,)) = ¢(9(b) = p(a,) = a,(v =1,2), we have ¢(b,) # ¢(by), more-
over, as (4, f) is a discrete relative algebra of (€', k), ¢(b, )¢A (v = 1, 2),
showing that ¢ is injective, i.e. an isomorphism: (B, g) ~ (C, h). Let
us finally remark that in the case of a finitary type A (all index sets
K; finite, i.e. all fundamental operations finitary), we may conclude that
our semilattice is weakly atomistic in the sense that each minimal com-

(°) By a conditionally complete ordered set, we want to understand a (partially)
ordered set P such that each non-empty bounded from above family has the least upper
bound; equivalently: each non-empty bounded from below family has the greatest
lower bound; equivalently: P can be made a complete lattice by adjunction of zero
and only one. This property is stronger than the notion given by G. Birkhoff.



244 P. BURMEISTER AND J. SCHMIDT

pletion B contains a minimal completion ¢, B & €, that is a minimal
element of our semilattice of minimal completions. For Theorem 8 shows
that the union of a chain of congruence relations Rp is of the same kind;
by Kuratowski-Zorn’s lemma, each Rp is contained in a maximal con-
gruence relation Rg.

4. The complete lattice of normal minimal completions. The situation
becomes nice if we restrict ourselves to those minimal completions that
behave well. In general, an extension (B, g) of partial algebra (4, f)
may be called normel (or perhaps “correct”, if one dislikes using the
abused word “normal” for the (n-1)-st time) if FC1 holds true; as (4, f)
is a relative algebra of (B, g), it will be sufficient to postulate that

g:(0) e A (beBXi) implies be A%,
for all indices #el.
THEOREM 9. Minimal completion B is normal if and only if

Ry~ (AxA) =idy,.

Since idy is the restriction of ¢z to A, this condition (strengthening
the condition of Theorem 8) means that ¢p(x)e A implies (and is implied
by) ¢s(#) = @, or simply weA, for all zeA. This is helpful for the

Proof of Theorem 9. Let (B, ) be normal. We prove the latter
implication by algebraic induction on x. The inductive beginning zeA
is trivial. Inductive hypothesis: ggp(x,)ed implies x,eAd, for all xel;,
for some index iel, some family (2,)..x, of elements w,eA. We have
to prove our implication for x: = g;(x,|=xeK;) (g the algebraic structure
of A). So assume pg(x)ed, i.e. hi(gp(x,)|xeK;)eA. Since (B, h) is normal,
op(z,)ed, even hi(pp(2,) |2 Ky) = fi(pp(w, |xeK) (f the algebraic struc-
ture of 4), by inductive hypothesis, x, eA, i.e. pp(r,) = x,, for all xeK;.
So fi(x,|zeK;) is defined, and since (4, f) is a relatlve algebra of (4, q).
® = gi(w,|neK;) = fi(x,|neH;)e A.

Conversely, let minimal completion (B, k) fulfill our condition.
Assume h;(b,|xeK;)e A. By the Axiom of Choice, there are elements
x,eA such that b, = gp(z,), for all xeK;, and we have ¢p(g;(z,| %< K;))
= h(b,|xeK;)eA. By assumption, g¢;(z,|xeK;)ed; by FC1 (for A),
b, = gp(x,) = x,eA, for all xeK;, completing the proof.

Since relation Rp = A x A is reflexive and symmetric, the condition
of Theorem 9 is equivalent with

Rp cidy v (A—A4)x(4—A4));
or, as
idy o ((A—A4)x(Ad—4)) = R4,

our condition means that
RB < K g s
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This again makes evident (which was trivial by definition of 4) that the
normal one-point completion A is a normal extension in the general
sense given bere. Moreover, we have the

COROLLARY 1. Mintmal completion B is normal if and only if
Bs 4.

And, which is more important, we have the following nice counter-
part to the Corollary of Theorem 7:

COROLLARY 2. The representative normal wminimal completions con-
stitute a complete latlice with the greatest element A and the least element A.

Note that all minimal completions are normal in the trivial case
that type 4 consists of constants only and K; = @ for all indices 7.
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