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1. Introduction. Two different notions of independence are used
in abelian group theory. The classical notion is the following: the
elements a,, ..., a; of an abelian group are independent if

’ k
(1.1) Zniai = (0 implies n, = ny, = ... = 0 = 0;
i=1
hence a single element « is independent if and only if it is torsion free.
In recent papers a new notion of independence (introduced by T.

Szele) has frequently been used:
the elements a,, ..., @ are independent if

i

k
> nja; = 0 implies n,a, = ... = npap = 0.
2=:1

Hence a single element a is always independent (see e.g. [2]).

The first notion is connected with the notion of free abelian groups.

The notion of a free universal algebra was introduced by Birkhoft
[1] and based on this Marczewski [4] gave a general notion of indepen-
dence in universal algebras.

In this note an attempt will be made to generalize Marczewski’s
notion of independence in such a way that when applied to abelian groups
it should be indentical with (1.2).

This will be achieved by defining the order of an element in a uni-
versal algebra.

The basic notions are given in § 2, the order of an element is defined
in § 3 while in § 4 the new notion of independence is given. The charac-
terization theorem of weak independence is proved in §5. Some of its
consequences and several unsolved problems are listed in § 6.

It should be noted that all the notions introduced in §2 are stand-
ard ones and are given here only for completeness sake. However, the
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notion of the order of an element — however evident it is — seems to
be new.

Most of the results of this paper were contained in my mimeo-
graphed note [3], which had a limited distribution in 1962.

2. Some notions and notation. An algebra is a couple (4; F) where A
18 a set and F is a collection of fundamental operations. Every operation
fe¥ is finitary, f = f(@,, ..., ®,) (n is an integer and depends on f), which
means that if (a,, ..., a,) is an n-tuple of elements of A, then f(a,, ..., a,)
is a well defined element of A.

Let B < A; we call (B; F) a subalgebra of (A; F) if a,,...,a,eB
and f = f(x,, ..., x,)eF imply f(a,,..., a,)eB.

Let (4; F) and (B; F) be algebras and h:  — zh a many-one map-
ping of A into B. The mapping % is called a homomorphism if

Tl on sy @) B = [0, Ry « 00y 2, 5)

holds identically for every feF. Accordingly, an isomorphism h is a homo-
morphism which is one-to-one and onto (Ah = B); an endomorphism
is @ homomorphism of (4; F) into itself, an automorphism is an isomor-
phism of (4 ; #) with itself.

A congruence relation @ on (4; F) is an equivalence relation on A
which has the substitution property:

(SP)if a; =b:(0),¢=1,2,...,n, then f(a,, ..., a,) = f(by, ..., b,)(O)
for every feF.

Let A6 denote the set of equivalence classes modulo @ and a/@
(aed) the equivalence class represented by a. Then (4 /@; F) is an algebra
where for every feF we put

(a0, ..., 0,[0) = f(a, ..., a,)[6.

The set of all congruence relations on (A4; F) is denoted by € (4; F).

Let 0, 0,¢0(A; F). We put 0, < 0, if x = y(0,) implies © = y(@,).
This makes C(4; F) a partially ordered set; it can be easily proved that
the Lu.b.: 6, v 0, and g.1.b.: @, ~ O, always exist. €(4; F) = (C(4; F);
v, ~) is a lattice, it is called the congruence lattice of (4; F).

The class A™(n = 1,2,...) of algebraic operation of n-variables

is the smallest class satisfying the following two conditions:

(2.1) the trivial operations e defined by e} (x,,...,x,) = x;(i

=1,2,...n) are in A™;

(2.2) if g1,..., gred™ and f =f(2,,...,x)el, then f(gy,..., g
= f(g1(®15 ooy ®a)y ooy Gi(@y, ..o, @) s also in A,

Let 7" be a fixed class of algebras (A4; F).
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An equivalence relation on 4™ is defined as follows: let f, geA™;
we write f=g¢ if flay,...,a,) =g(ay,...,a,) for every a,,...,a,ed,
(A; F)ex .

Let A describe the equivalence classes under this equivalence
relation. We can define the operations on A% in a natural way; formula
(2.2) shows that (A%; F) is an algebu this will be denoted by A} .

We put A = A(“’ v AD O A® O .. and we define an equivalence:
by j =g (feAd®, ged®) it for every a,, s, ..., Gpaxpyed, (A;F)et
the equa,lity flay, ..., a;) = g(ay, ..., q;) holds. The equivalence classes
will be denoted by A% and the corresponding algebra (A%; F) by AL,

Let H = A; we define the subset [H] of 4 by ae[H] if there exists
an integer n, and feA™ and h,,..., h,eH such that f(h,,...,h,) = a.

Then ([H]; F) is a subalgebra of (A4; I'); it is the subalgebra gen-
erated by H. ‘

If A, Bare sets, 4 -— B denotes the set theoretical ditference. {a,, ..., a,}
denotes the set whose elements are a,,...,a,. The notation [{a,,...}]
is replaced by [a,, ...].

3. The order of an element. Let " be a class of algebras, (4; F)e ¥
aeA. The order of a is defined as follows:
Consider the mapping

ey —> a;

this has a unique extension to a homomorphism A of 2§ into (4; F);
let O(a) denote the congruence relation induced by h; we call O(a) the
order of a.

It is obvious that O(a) is uniquely determined by a, (A; F) and ¥
Further, O(a)eC (AR ; F) = C(AY).

We first give a few examples:

3.1. Let " be the class of all additive groups. Then 2§ is isomor-
phice to the group 3 of integers, let e; —~ 1 under this isomorphism. Let
B e, ael@. Then the mapping 1 — @ has a unique extension to a homo-
morphism of 3 into &. It is easy to see, O(a) is the congruence modulo =,
where n is the least integer with na = 1. This O(a) is completely de-
scribed if we give this n, which is usually called the order of a.

3.2. Let # be the class of all semi-groups. Now 2% is isomorphic
to M, the (additive) semi-group of positive integers, again ¢; —> 1 under
this isomorphism. In this case O(a) can be described by a pair of non-
negative integers (m,n) as follows: « =y (()(a)) (r,yel) if and only
if e =y or & >m, y >m and n divides r—y.

3.3. A« is the class of all right modules over a ring (R; --, ). This
may also be included in the above discussion in the usual way by making
every element reR correspond to a wunary operation f, and put F
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= {-+, fr}rer and considering a right-module M as an algebra (M;F).
Then A is isomorphic to (R; F) and O(a) may be identified with the
class containing the zero of R, which is an ideal I,. Usually, this ideal /,

is called the order of a.
These examples show that the notion of an order of an element is a

natural generalization of known concepts.
The following propositions show the usefulness of this notion:

3.4. Let (A; F), (B; F)ex and h be a homomorphism of (A; F) into
(B; F),aeA.
Then

(3.5) O(a) < O(ah).
To prove this we consider the homomorphisms:
hy: UG — (A5 F); 1 — a;
rg: AP — (B; F); el — ah.

Then
hih = h,,

which implies that # = y (0 (ah)) if and only if zh, = yh,, i.e. if (zh))h =
= (yh,)h. Thus xh, = yh,, implies xh, = yh,, i.e. & = y(()(a)) implies
& = y(0(ah)).

A partial converse of 3.4 holds too:

3.6. Let (A;F), (B;F)exX', aeA, beB and suppose O(a)< O(b).

Then there exists a homomorphism

h: ([a]; F) — ([b]; F),

carrying a into b (b = ah).
To prove this consider the homomorphism:

hy: AY - (A5 F), € — a;
ho: AL —~ (B; F), et —b.

We define & as follows: let a, e[a], then there exists an a,e A% with
G, = ashy; let a,h = azh,.

First we have to prove that & is uniquely defined. Indeed, if a,/;, =
= azh, (azeAY)), then a, = ay(0(a)), which implies a, = a,(0(b)),
1.e. aghy = ash,.

To show the substitution property let feF, f = f(x,,...,x,), take
ayy ..., a,¢e[a]; then

a; = pi(a), pedD, i=1,... 0.
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We want to show

fl@yy ..., ag)h = f(ah, ..., anh).

Let
a,eAY, aih,=a;, i=1,...,n,
("GA.(JIL)’ chy = flay, ..., a).
Then

6 = flag, ..o a.;)(()(ﬂ)),
thus
;f(a’;y ey (l;,,)(()(b));

and also

Thus
F@yyony @) = chy = f(A1y .oy p)hy = f(ayhg, ..., aghs)
e Py Py s sy G R)s

It should be noted that 3.6 is new only in this form. In fact it is
a special case of the so called Second Isomorphism Theorem, which is
a part of the folklore.

3.7. The order of an element (a, b), in the direct product of (4; F)
and (B; F), can be computed as follows:

(3.8) 0(a,b) = 0(a) ~ O(b),

if (A4, 1), (B, F) and (A XB, F) are in .

Let pq, paeAP. (3.8) means that p, = p,(0(a, b)) if and only if
p1 = p.(0(a)) and p, = px(0(D)). Since p, = p,(0(a, b)) means P4 ((a, b))
— py(a, b)) and so on, we get that we have to prove the following:
pi((a, b)) = py((a, b)) if and only if p,(a) = py(a) and p,(b) = p.(b),
which holds by definition.

4. Independe‘nce and weak independence. Marczewski’s notion of
independence is defined as follows:

4.1. Let # be a class of algebras, (4; F)eX", a,,...,a,eA. We say
that the sequence a,, ..., a, is independent if

Pi(@rynny ) = Ds(@y,y ...y M), Py szftm)s
imply
P1 = Po-
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It may be remarked that Marczewski’s definition is restricted to
the case when " consists only of (4; F); some of his results, however,
remain true for an arbitrary class . The characterization theorem of
independent sequences is the following:

4.2, Lot ay,...,a,¢A, (A; F)ex. Then the following conditions are
equivalent :

(4.2.1) ay, ..., ay is an independent sequence;

(4.2.2) let by, ...,b,eB, (B;F)ed and p: a;—>by, i =1,...,n.
Then p can be extended to a homomorphism of ([ay, ..., a,]; F) into (B; F);

(4.2.3) the mapping p: e — a; can be extended to an isomorphism h
of AL onto ([ay, ..., a,]; F).

The equivalence of (4.2.1) and (4.4.2) is stated in [4]; I am sure
that Marczewski knows that they are equivalent to (4.2.3) as well, how-
ever, I cannot give a reference.

An important corollary of 4.2 (which is also due to Marczewski) is:

4.3. If ay,..., a, is independent, then so is Ay oy @y where j —i;
18 any permutation of 1,...,n.

Thus we can speak of an independent set a,,....a,, because the
ordering does not matter.

4.4. An element a is independent if and only if a is torsion free, i.e.
Oa) = o.

This is trivial by (4.2.3) and the definition of O(a).

Now we give the definition of weak independence.

4.5. Let a,,...,a,eA,(A; F)ex'. We say that the sequence a,, ..., a,
iy weakly independent if

(4.5.1) Prl@yyeeey @) = poly, ..oy ty), Py, Pred®,
imply
(4.5.2) Pi(byy ooy by) = po(by, ..o, by)

for every b,,...,b,eB, (B; F)ex", for which
(—153) U((lt) = O(b@), i = 1, ey N

First, let us see some trivial consequences of this definition.

4.6. Suppose ay, ..., a, are torsion free elements. Then ay, ..., a,
is independent if and only if it is weakly independent.

The difference between independence and weak independence is
condition (4.5.3). However, if O(a;) = ... = O(a,) = o, then (4.5.3) is
no restriction on the choice of the b; and hence in this case the two
notions are equivalent.
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4.7. If A is a subclass of lattices, independence and weak indepen-
dence are equivalent.
Obviously, since in a lattice every element is torsion free.

5. Characterizations of weak independence. We would like to get
a result analogous to 4.2. In order to achieve that we need some nota-
tion. '

The algebra A% is generated by e}, ..., ¢, and the subalgebra 2;
generated by e; is isomorphie to A0, Suppose we are given n congruence
relations 6, ..., @, of AY). Consider O; as a congruence relation on ;.

Take a congruence relations @ of A% having the following proper-
ties:

(5.1) the restriction of @ to ; is > 6; (i =1,2,...,n);

(5.2) AL /O is isomorphic to a subalgebra of an algebra in .

If there exists a congruence relation which is the smallest one having
properties (5.1) and (5.2), then it will be denoted by X6;.

5.3. Let a,,...,a,eA, (4; F)ex". Then the following conditions are
equivalent:

(5.3.1) a,, ..., a, s a weakly independent sequence;

(5.3.2) let by, ..., byeB, (B; F)ex , and O(a;) < O(b;); then the map-
ping p: a; —b; (i =1,...,n) can be extended to a homomorphism of
([@y5 ...y ay]; ) tnlo (B; F); '

(5.3.3) 20(a;) exists and

2[9;) [ Z0(a;) = ([ayy--0y @n]; F) e; [ 20(a;) — a;.

Suppose that a,, ..., , is weakly independent and the p of (5.3.2)
is given. Define h as follows:

q(agy .ovy @)l = q(byy ..., by)  for every gedA™.

Obviously, » maps [a,, ..., a,] into (B; F). This mapping is well-
defined since gy(y, ..., @y) = Ga(@yy .ory @) (1, g2 A™) implies by 4.5
that Dby -« a5 by) = GlDag s 00y Uy

The mapping h is an extension of p since a;h = ej(a,, ..., a,)h =
= 5By -e0y bn) = b

Finally, & is a homomorphism. The proof of this is very similar to
3.6, so it can be omitted. :

Thus (5.3.1) implies (5.3.2).

Next suppose that (5.3.2) holds and consider the mapping € —> a;;
this can be extended to a homomorphism % of A4 into (A4; F). Let @
be the congruence relation induced by k. Then © satisfies (5.1) and (5.2).
Indeed, if we restrict & to 2(;, then we get a homomorphism of 2l; into
(A; F) carrying ¢! into a;. Since 2; ~ 24}, we get that the congruence
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relation induced by the restriction of A on 2; is > O(a;). Thus (5.1) is
verified; (5.2) is obvious. Now we prove that @ is the smallest one satis-
fying (5.1) and (5.2). Indeed, if @ satisfies (5.1) and (5.2), then consider
(B; F)ex” of which 23/® is a subalgebra and let b; denote the homo-
morphic ‘image of ¢;. Then by (5.1) O(d;) > O(a;), Thus by (5.3.2) the
mapping p: a; = b; can be extended to a homomorphism k. Since the
homomorphism which induces @ equals the product ik, it follows that
O < @. Therefore ® = X0 (a;) and we arrive at the isomorphism statement
of (5.3.3).

Finally, suppose that (5.3.3) holds and let p,, p,eA™, p,(a,,..., a,)
= Ps(@y,y ..., a,) and let by, ..., b, be given as in 4.5.

Let h, and h, be the homomorphisms induced by the mappings
e —a; and ¢ —b; (n =1,...,n),respectively, and @, , @, the congruence
relation of 2% induced by h, and h, respectively.

Then by (5.5.3) @, = X0(a;) and (4.5.3) imply that @, satisfies
(5.1) and, obviously, it satisfies (5.2) as well. Hence by the definition
of X0(a;) we get O, < 0,.

By the same argument as in 3.6 we get that there exists a homo-
morphism

h: ([@15---y an]; ) = ([by, ..., b,]; F)
such that

Therefore
Billgy vy By} = Pilahy ..., anh) = pi(ay, ..oy an)h
= Pa(@1y +ovy @) h = py(ayh, ciey O h) = Po(by, ..uy by),

which was to be proved.

The proof of 5.3 is completed.

The only difficult notion involved in 5.3 is that of X0;. It should
be remarked that in case #” has special properties X 6; can be more simply
characterized.

5.4. Suppose A" contains the homomorphic images and subalgebras
of algebras in A Then X0; always exists.

6. Consequences and problems.
6.1. A single element a is always weakly independent.
Proof. Use the characterization given by (5.3.3) and 3.6.

6.2. The elements ay,...,a, of an abelian group are independent if
and only if Xkia; = 0 implies kyja, = ... = k,a, = 0.
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Tn this case A% is the free abelian group on # generators, thus
(5.5.3) gives the isomorphism:

([, -oes al; +) = D) ([a]; +),

which is equivalent to the statement of 6.2. The same result is true for
an arbitrary module over a ring.

6.3. In lattices independence and weakly independence 1is the same.
This is true by 4.6.

6.4 If ayy...,a, 18 a weakly independent sequence, then a; , ..., a;,
is also weakly independent, where i, ..., i, s any permutation of 1,..., n.

Thus we can speak of a weakly independent set I, which in the
finite case means that any ordering of I gives a weakly independent
sequence while in the infinite case it means that every finite subset
of I is weakly independent.

A basis H of an algebra (A ; F') e is a set which is weakly independent
and generates (A4; F).

6.5. To every integer n there corresponds a class A and an algebra
(A; F)edt such that (A; F) has a basis of k elements if and only if k<n.

Let Py, Pay---y Pu be distinet primes, €; = (C;; +) be the cyclic
group of order p;, € = 2€;, # = {€}. Then X is effective in 6.5.

One of the unpleasant surprises about weak independence is that
it is possible that a,,...,a, be independent and a,e[a,,...,a,] as it
is shown by the following example:

6.6. Let A = {ay, a,}, F ={f, g} and f(a,) = a, f(ay) = ay; g(a,)
— @y, g(ay) = @y, and # = {(4, F)}. Then AY consists of three ele-
ments @, y, z and f(x) = f(y) =f(:) =2 and g(2) =g(y) =9(z) =y.
It is easy to see that @ = z(0(a,)), while z 5 2(0(a,)) and = = y(0(as))
while @ £ y(0(ay)). IHence neither 0(a,) < O(as) mnor O(ay) = O(ay)
hold. Therefore, the only mapping p satisfying the assumption of (5.3.2)
is p: a, —a,, @, —> a,, whence a,, a, is an independent sequence and
ayelay], asela].

Some of the problems, which arise very naturally, are the fol-
lowing:

ProsrEM 1. Let iy, 7s, ... be a (finite or infinite) sequence of
integers. Construct a class #” and an algebra (A; F)eX such that (4; F)
has a basis of k elements if and only if k¥ = n; for some ¢ (P 602).

PropLEM 2. Let A be a set and J a hereditary family of finite
subsets of A including all one element subsets. Prove the existence of
an algebra (4; F) (with #" = {(4; F)}) such that a subset in (4; F)
is weakly independent if and only if it is contained in J (P 603).
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ProBLEM 3. Is it possible that an algebra without constant algebraic
operations has a finite and also an infinite basis? Even if F is finite
(P604)?

PrOBLEM 4. Find sufficient conditions on the class 2 under which
@y€[a@y,y ..., a,] implies that a,,...,a, is not independent and not all
elements are torsion free (P 605).

ProBLEM 5. Prove that if #" is an equational class of algebras with
anullary operation that determines a one-clement subalgebra in every
algebra in &, and a,,...,a, is independent if and only if [@iig o0 05 O]
= [a;] X...X[a,], then J is equivalent to the class of all modules over
a ring. (If this is not the case, what additional conditions are needed ?)
(P 606)

PROBLEM 6. Work out the notion which corresponds to the notion
of p-rank in Abelian groups (P 607).

Remark. The role of elements of order p should be taken by ele-
ments whose order O(a) is a dual atom in C(A4}; F).
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