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0. Hewitt and Kakutani [2] discovered a large class of probability
measures A on a locally compact abelian group G such that

(1) A(E) = A(—H) for Borel subsets F.
(2)  For integers m >n > 1, every translate b+8(1"), of the closed sup-
port of A", has A™ measure 0.

The concept of independence is basic in [2], but measures 1 are
constructed in [4] with no algebraic tools. Here we present a third
method quite different from these, wherein G is always the real line.
We define

[t =inf|t—mn|, = =0, 41,...
1. Let 6 >1 be a real number with the property
(3) 16°] < Ar*, 0 <r<1,1<k.
The numbers 0 are treated at length by Salem [5]. Let

T: O<p1<p2<---<pk<pk+1<pk+2<o--

be a sequence of integers with many “isolated” members:
(4) SUD If (P — Py Phyr—Picsn) = oe.
Finally, 4 is the measure whose Fourier-Stieltjes transform 18
A(u) = fe""“"/l(dt) = ﬁcos(uﬂ‘pk), — oo < U < oo,
ad :

THEOREM 1. A has properties (1) and (2).
From a deep method of Erdos we have a complementary result.
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THEOREM 2. There exists a sequence T with property (4) and a number
d > 1 such that for almost all pe(1,d) the measure p with transform

ju(u) = [ [ cos(up=")
k=1

has a continuous density. Thus u* and u* are not mutually singular.

Returning to the first result, we say that a measure v has property
(S) (for Sreider), if for each complex number z of modulus <1, there
is a sequence of integers w, such that

lim f e~ 2ty (dt) = zv(F)
n—>OOF
for every Borel set F (see [3]).
THEOREM 3. For almost every real number y, the y-translate of 2
Ay(E) = A(E—1y), has property (S).

2. Proof of Theorem 1. Property (1) is obvious for A and it can be
used to eliminate consideration of the element b in (2). For the symmetry
of 1 yields

(S (AT) = 2™ (S (M) —8(A") = (Am(S(A")+b))2.

It is convenient now to write A*™ in a more analytical form. Let A
be the space of sequences X = (X,, X,,..., Xy, ...), each X, assuming
integral values in [ —2m, 2m]. A measure P is defined in A by requiring
that the X,'s are mutually independent and

2m

m-+§

Then A*" is the distribution of the random variable

P{Xk=2s}=4*m( ), § = —m, —m+1,...,m.

7 = i 0Pk X,
k=1

We can determine infinitely many integers ¢, and integers j = j(q)
attached to them, so that

Xy # Xpoy = 04— 607" % 0 (mod 1).

Suppose in fact that

S
10m6 10m
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and
(6) |[6’Z— 6" -Pa+1X 1l < —1——
@+ 20m0
for all X. Then, if X, , # X;H,
1 ; , 4m

10mo < 97_p4+1|Xq+1—Xq+1] < Tom’

o 2 1 1
0 < 07— 67 — i
< "< T Tome <3

for some integer n. The exponent j can always be chosen so as to satisfy (5).
Now

|67 — 6P Xyl < 2m D NIIOPH|+-2m Y] 6P

k<aq gt+i<k
< 2mA 2 Y =Pk 2m Z
k<q k=pgo—7
+oo0
K N -k
< 2mA Zr—t—Qm 2 '6 .
k=7'—pq k=pq+2—9

By (5), j—pq+1 18 bounded for all ¢, and using (4), both j—p, and
Pgr2—] can be made arbitrarily large and positive. Then (6) is attained.
To prove Theorem 1 observe that if X, , > 2n, then Z¢S(2*"); hence
P{ZeS(A")} = 0.

Proof of Theorem 2. Hereis a statement of the result of Erdos [1].

For numbers # > 0 and ¢ > 1 let N(u, p) be the number of integers &
for which

1
k>1, |eos(ug™")| < cos 30"

For any h >1 there is a ¢ = ¢(h) > 1 such that
eV —0(u"), w— + oo,

for almost all ¢e(1, ¢).
The sequence T depends on a random sequence

& = (Ely 527 wire y §k: )

of 0’s and 1’s distributed as in the coin-tossing game. Formally, 7' = T'(£)
= {k: & = 1}, and property (4) is almost certain. The transform g now

takes the form
n %5k<P
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If ¢ is fixed, u(u) is regarded as a function of £, and E denotes
expectation

oo

B(law)) = [ [ 41+ leos (ug™¥)).
k=1
Using Erdos’ theorem, there is some d > 1 such that for almost
all pe(1, d)

[ 1uPB(ja(u)))du < oo,

hence for almost all &

[ (ul lis(u)|du < oo.
The statement of the theorem now follows by applying Fubini’s
Theorem to the variables & and ¢.

Proof of Theorem 3. We use again the space A of the first proof
but set

P{Xy =1} =P{X; = —1} = }.

The distribution of Z is now A. Let n, be a positive integer; by the
argument of the first theorem there is a sequence of integers j, convergmg
to infinity such that

Lim ||6"~™Z — ~™X,|| = 0
=00
uniformly in 4. This holds true if 6%~"1is replaced by the nearest integer,
say wu;, and if the numbers in the braces are multiplied by a fixed in-
teger n,. Hence
lim |exp — (2nin,u;,Z) — exp(—2ming 6~ ™X;)| =

Let f(X) be a complex function of only finitely many of the co-

ordinates X,. Then

lim E(f(X)exp— (2nin,u;2)) = cos2mn, 0" H(f).

. u?-—>oo

By an easy continuity argument this is valid for any integrable
function f(X), in particular, the indicator function of the set {XeF}, F
Borel in (— oo, oo). The last equation is then

lim f e~ Y ) (dt) = cos2rn, 07 A(F).
uf_’ooF

When 4 is replaced by 2, the left-hand side is multiplied by e 27"2%?,
and the right is changed to A,(F).
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The numbers n,6="(ny, ny = 1) are dense (mod1), so that 1, has
property (S) provided that for each sequence {n,u,}, constructed above,
{nyu;y}72, is dense (modl). The sequences {m,u;} are countable in
number so it is enough to prove the density condition for almost every
y and each one separately. If then {n,u;y} is not dense (mod1), there
is a pair of rational numbers r,,7, (0 <7, <7, < 1) such that

Mo Uy ¢ (11, 75) (mod1) for j>1.

The last line defines an “H-set” (Rajchman) and this has measure 0
(see Zygmund [6], p. 268). The proof is complete.
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