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ON SYSTEMS OF MAPPINGS BETWEEN MODELS
BY

J. SLOMINSKI (TORUN)

In this paper we consider a general existence theorem for models
concerning a-systems of mappings between models. As a special case
of this theorem we obtain the existence theorems from papers [2, 5, 7,
8, 10]. The main results of this paper were announced in [9].

§ 1. Relations and partial operations. Let 4 be an arbitrary set
and let & be any ordinal number. By a k-ary relation in the set A we under-
stand any subset of the set A" of all sequences (as, £< k) with a;e A for
£ < k. Any mapping of any subset of the set A" into the set A is said
to be a k-ary partial operation wn the set A. If f is a k-ary partial operation
in the set A and it f is defined for a sequence (a;, & < k)eA”, then by
flag, &€ < k) will be denoted the value of f for (ag, E<< k). The k-ary
partial operations in the set A defined on the whole set A" are called
k-ary operations in the set A. Any k-ary partial operation f in the set A
induces in A the (k-+1)-ary relation relf such that

(1) (ag, &€ < k; a)evelf < a = flag, § < k).

The relation rel f = r has the following property:

(2) for each sequence (ag, &< k)eA* there exists at most one element
aeA with (ag, §<<k;a)er.

For every (k4 1)-ary relation r in the set A having property (2)
there exists one and anly one k-ary partial operation f in A such that
r = rel f.

We define the notion of a homomorphism of relations as follows.
Let » and s be two k-ary relations in the sets A and B, respectively.
A mapping h of A into B is called a homomorphism of r into s if it has
the following property :

(3) for all (ag, &< k)eA" the condition (ag, &£ < k)er implies the con-
dition (h(4e), &< k)es.
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A homomorphism h of a k-ary relation r in a set A into a k-ary re-
lation s in a set B is said to be strong, provided for each sequence (a., £
< k)ed®, if (h(ag), & < k)es, then there exists aseA such that h(ai)
= h(ae) for &< k and (ai, £ < k)er.

A mapping h of a set A into a set B is called a (strong) homomor-
phism of a k-ary partial operation f in the set A into a k-ary partial
operation f’ in the set B if h is a (strong) homomorphism of the relation
rel f into the relation rel f'. Let us observe that

(1.1) A mapping h of a set A into a set B is a homomorphism of a k-ary
partial operation f in the set A into a k-ary partial operation f' in the set B
if and only if for each sequence (ag, & << k) e A% af f is defined for (ag, E<< k),
then f" is defined for (h(ag), &£ < k), and if, moreover, we have

(4) h(f(ag, &< k) = f'(h(as), €< k).

Proof. Let h be a homomorphism of f into f’. Then A is a homomor-
phism of the relation rel f into the relation rel f’. Hence if @ = f(a:, £ < k),
then, by (1), (a¢, & < kj; a) erel f, and thus, by (3), (h(as), &<k, h(a))erel f".
Therefore, by (1), h(a) = f'(h(a), &£ < k), i.e. condition (4) is fulfied.
Now let us assume that condition (4) holds. If (a:, &£ < k, a)erel f, then,
by (1), @ = f(as, & < k), and thus, by (4), we have h(a) = f'(h(as), £ <k).
Therefore, by (1), (h(ag), &£ < k; h(a))erel f’, ie. b is a homomorphism
of rel f into rel f* and theorem (1.1) is proved.

The one-to-one homomorphisms arve isomorphisms.

A subset B of a set A is said to be algebraically closed with respect
to a k-ary partial operation [ in the set A, provided for sequences (bs, & << k)
eB”*, if f is defined for (bey &< k), then the value f(be, £ << k) belongs
to B.

We define the direct product of relations in the ordinary way. Let 7'
be any set and let »;, for teT, be any k-ary relation in the set 4;. More-

over, let 4 = P 4, be the Cartesian product of sets A, (i.e. A is the set
ieT

of all mappings z: T — (J A, with y(f)eA, for teT). The direct produc!
teT

of relations r;, where teT", is the k-ary relation » in the set 4 = P 4,
such that teT

(5) (Xey & < K)er if and only if (ye(t), & < k)er, for teT.

The natural projection p; of A onto A; with p;(y) = x(t) for yed
is a homomorphism of the relation » into the relation r; for all {eT'. The
direct sum of the k-ary relations vy in the sets A;, where teT, is defined
as follows. The set of all pairs <, a), where teT and aeA;, which is

called the direct sum of sets Ay, will be denoted by S 4;. The direct sum
teT
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of relations 7y, teT, is the k-ary relation 1’ in the set 4 = S A4, such
that e

(6) (L, agy, E< k)er’ if and only if there exists an element t*eT
with #; = t* for all &<k and with (az, &< k)ersa.

The natural injection i, of A, into A" such that i(e) = {, a) for
aed, is a strong isomorphismn of 7, into »'.

The k-ary partial operation f in the set 4 = P 4, is said to be the
teT

direct produci of the k-ary partial operations f; in the sets Ag, teT, provided
the relation rel f is the direct product of the relations rel f; te1'. The

k-ary partial operation f’ in the set A’ = S A4; is called the direct sum
teT

of k-ary partial opeiations f, in the sels Ay, tel', it the relation rel f"is
the direct sum ot the relations rel f;, te7'. The direct product f and the
direct sum f’ of partial operations f;, fe', always exist and are uniquely
determined by f;, teT.

Now we shall introduce the notions of weak continuity and continuity
of partial operations in topological spaces. Let A be any topological
Hausdorff space and let f be an arbitrary k-ary partial operation in A.
The partial operation f is said to be weakly continuous provided, for every
sequence (ag, & < k)eA”, if f is defined for (a;, & < k) and a = f(ag, § < k),
then for every neighbourhood V of the element a there exists a neigh-
bourhood U of the sequence (ag, & << k) in the product space AF such that
f(U) = V, where f(U) is the set o} all values of f on the sequences belong-
ing to U. Let f be a weakly continuous k-ary partial cperation in the
space A and let B be an algebraically closed subset B of 4 with respect
to f. Then the topological closure B of B may be not algebraically closed
with respect to f. A partial operation f in a topological space A is said
to be continuous if f is weakly continuous and the topological closure
of every algebraically closed subset with respect to f is also algebla,lcally
closed with respect to f. The notion of continuity and weak continuity
for operations are identical.

§ 2. Models and quasi-algebras. Let ¥ and R be two arbitrary sets
of operator and of relation symbols. For each feF and each reR we shall
denote by n(f) and =(r) the ordinal numbers n, and n, for which the
operator symbol f is n,-ary and the relation symbol r is #,-ary. The num-
bers n(f) and n(r) are called the ranks of f and of r, respectively. Any
system

(7) A =<4, fAfeF (ra)reR>

such that A4 is any set and f, is an n(f)-ary partial operation in A foI'
fel and 7, is an n(r)-ary relation in 4 for reR, is called a model of type
(F, R). The models of type (F, @), where @ is an empty set, are said to
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be quasi-algebras of type F. If in a quasi-algebra of type I only opera-
tions appear, then it is called an algebra of type F. Let (7) be an arbitrary
" model of type (¥, R) and let A" be a subset of A which is algebraically
closed with respect to every partial operation f, for feF. Then A’, and
also the sequence A’ = (A’ (f,)feF, (ry)reR> such that, for feF
and reR, 1, =f,14" and r, = r4| A’ are the restriction of fi1 and 7,
to the subset A’, are called (algebraical) submodels of model A. The intersec-
teon of submodels of A is also a submodel A’ of A. Therefore for any subset
B of a model A there exists the least submodel of A4 containing B, which
is the intersection of all submodels A’ of A with B< A’. We say that A"
s geneiated by B and it is denoted by C4B. If C,B = A, then B is said
to be a set of generators for model A. Let (7) and B = (B, (fy)fel', (rg)reR>
be two models of type (#, R). A mapping h of A into B is said to be a
(strong) homomorphism of model A into model B if 1 is a (strong) homo-
morphism of f, into f and of #, into r, for all feF and r<R.
It is easy to verify that

(2.1) A one-to-one mapping © of A onto B is a strong isomorphism
of model A onto model B if and only if the mappings i and i~* are isomor-
phisms of A onto B and of B onto A.

Let T be any set and let A; = Aty (fa)fel'y (rq)rell) be any
model of type (F,R) for feT'. Then the model A = (A, (f)feF,

(rq)reR)> such that A = P 4, is the Cartesian product of sets A, and,
teT

for all fel and all reR, f, and 7, are direct products of the partial oper-
ations j,, and of relations r,, where teT, is called the direct product

of models A;,teT, and it is denoted by P A4,.
tel'
The model A’ = (A',(fy)feF, (r)reR> such that A’ =S 4,
teT
is a direct sum of sets 4;, and f,. and 7., for feF and for re R, are direct

sums of partial operations f 4, and relations »,,, where te7', is called the

direct sum of models Ay, teT, and it is denoted by S A4,.
teT

Now we consider the notion of a topological model. Let A = (A,
(fa)feF, (rq)reR) be any model of type (F, R) and let A be a topolo-
gical Hausdorff space such that for each feF the partial operation f,
is (weakly) continuous in the space A. Then A is said to be a (weak)
topological snodel of type (F, R). Let A be an arbitrary (weak) topological
model of type (F, R). By a relative topological submodel of A we under-
stand any algebraical submodel of A with the induced topology. A relative
topological submodel A’ of A is called a topological submodel of A if A’
is a topologically closed subset of the space A. The intersection of topo-
logical submodels of A is also a topological submodel of A. Therefore
for every subset B of A there exists the least topological submodel of 4
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containing B, which is the intersection of all topological submodels A’
of A with B < A’. This model will be denoted by (%4 B and it is called
topologically generated by B. Let us observe that

(2.2) OB = O 4B tor all topological models A and all subsets B of A,

where C 4B is the topological closure of the algebraical submodel C4B of A
generated by B.

Theorem (2.2) is false for weak topological models. The notions
of the weak topological and of the topological model of type (F, R) are
identical only for models with operations. Every algebraical model A
of type (¥, R) may be considered as identical with the topological model 4
of type (F', R) with the discrete topology. From an algebraical model A4
one can obtain many topological models by introducing different topo-
logies in the set 4. Let A and B be two (weak) topological models of
type (F, R). An algebralcal (strong) homomorphism % of A into B is
said to be topological if h is a continuous mapping of the space 4 into
the space B. A strong isomorphism ¢ of A onto B is called topological
(resp. a homeomorphism) if the mappings ¢ and ¢! are continuous.

If A,, for teT, is a (weak) topological model of type (F, R), then

the direct product A = P 4, and the direct sum A’ = S 4; of models
teT teT

Aq, teT', may be considered as (weak) topological models of type (£, R)

with the ordinary topologies; the neighbourhoods of the space A = P 4,
teT

are the sets of the form (M) pi'(U;), where T" is a finite subset of 7' and U,
teT’

is a neighbourhood in 4, and p; is the natural projection of A onto A4y

the neighbourhoods of the space A’ =S A, are the sets of the form
teT

{¢t,ay: aeV}, where teT and V is a neighbourhood in the space A;.

§ 3. The direct product and the direct sum of systems of mappings.
Let X and T be any sets. Moreover, let ¢, be any mapping of X into
a set Ag, teT. The direct product of mappings oy, teT, is the mapping ¢
of X into the Cartesian product A = P A; of sets A, such that for all
zeX we have et

(8) o(x) = 5, where x(t) = oy (@) for each teT'.

Now, let us consider the mappings o, of a set 4, into a set X, where
tel'. Then the direct sum of mappings oy, teT, is the mapping o' of the
direct sum A’ = S A, of the sets A4; into the set X such that

teT

(9) o' (ty a)) = oy(a) for all teT and all aed,.

Let a>1 be any ordinal number. By an a-system of mappmgs of
a set X into a set Y we understand any sequence {o,, u < a}, where o,
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for p < a, is a mapping of X into Y. Let o, = {oy,, u < a}, tor teT, be
an a-system of mappings of a set X into a set 4,. Then the a-system

o = {o,, p < a} of mappings of X into the set 4 = P 4, is said to be
teT

the direct product of a-systems oy, teT, provided for every u< a the
mapping o, is the direct product of mappings oy, with teT. We define
the direct sum of a-systems of mappings as follows. Let y, = {y,, p < a},
for teT', be an a-system of mappings of a set 4, into a set X. Then the

a-system y = {y,, u << a} of mappings of the set A’ = S 4, into the set
tel

X such that, for every u < a, z, is the direct sum of mappings y,,te7,
is called the direct sum of the a-systems y;, teT.

If X and Y are topological spaces and if y is a continuous mapping
of the space X into the space Y, then we say that y is a topological map-
ping of X into Y. If ¢ = {o,, p << a} is an a-system of topological map-
pings of X into Y, then we say that o is a topological a-system of mappings
of X into Y. Since the direct product (resp. the direct sum) of topological
mappings is also a topological mapping, we have the next theorem:

(3.1) The direct product (resp. the direct sum) of topological a-systems
of mappings is also a topological a-system of mappings.

§ 4. A general existence theorem for models. In this paragraph
we shall consider the a-systems of mappings between models of type
(#, R) and of type (F*,R*). Lot A = (A, (f )feF,(r,)reR> be an
arbitrary but fixed (topological) model of type (¥, R) and let B be any
class of (topological) models of type (F*, R*). Any pair (¢,B), where
o = {o,, n<< a} is a (topological) a-system of mappings of 4 into B
(i.e. of 4 into B) and BB, is said to be a (topological) a-system of B-map-
pings of A. Let (o, B) be a topological a-system of B-mappings of A
such that o = {0,, u < a}, where for each u << a the mapping ¢, is a topo-
logical hom2omorphism of the space A into the space B. Then we say
that the pair (o, B) is a topological a-system of B-extensions of A.

Now we introduce som= relations between (topological) a-systems
of B-mappings of A. Lot (o, B) and (¢’, B’) be two (topological) a-systems
of B-mappings of 4. We say that:

1° (o, B) < (o', B’) if there exists exactly one (topological) homo-
morphism % of B into B’ such that ¢’ = ho (i.e. d, = ho, for u < a, where
o' = {04y p< a} and o = {o,, p < a});

2° (o, B) = (¢', B’) if there exists exactly one (topological) strong
isomorphism h of B onto B’ such that ¢ = ho.

Let X' be any class of (topological) a-systems of B-mappings of A.
A (topological) a-system (o, B) of B-mappings of A is said to be (topo-
logical) free in the class X' if (o, B)eZX and for every a-system (o', B')eX
we have (o, B) < (o', B’). Now we prove
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(4.1) A (topological) free a-system of B-mappings of A in the class X,
if it exists, is uniquely determined up to the relation =.

Proof. Let (o, B) and (¢, B’) be two (topological) free a-systems
of B-mappings of A in the class 2. Then o' = ho and ¢ = h'o’, where h
and B’ are the (topological) homomorphisms of B into B’ and of B’ into B.
Hence we obtain ¢ = hk'¢’ and ¢ = h'he. But we have also ¢ = I'c’
and ¢ = Io, where I’ and I are the identity isomorphisms of B’ onto B’
and of B onto B. Thus, by 1° we have hh' = I" and h'h = I. Hence h
and 1’ are one-to-one and “onto”, and, moreover h’' = h~'. Therefore h
is (topological) strong isomorphism of B onto B’, whence (o,B) = (o', B'),
and thus (4.1) is proved.

(4.2) Let (o, B) be a topological free a-system of B-mappings of A
in the class X. Then the model A has a topological a-system of B-extensions
in the class X if and only if the pair (o, B) is a topological a-system of B-ex-
tensions of A.

Proof. Let (¢’, B’) be a topological a-system of B-extensions of A4
in the class 2. Since (o, B) is a topological free a-system of B-mappings
of A in the class X, therefore (o, B) < (o', B’) and thus we have ¢ = ho,
where % is some topological homomorphisrm of B into B'. Hence it fol-
lows that (o, B) is also a topological a-system of B-extensions of 4, and
the proof of (4.2) is finished.

Let (o, B) be an arbitrary (topolegical) a-system of B-mappings
of A into B and let B’ be such a (topological, relative topological) sub-
meodel of B that the sct o(4) = U0, (4), where ¢ = {0,, p<< a}, I8

p<a
contained in B’. Then the pair (¢, B’) is said to be a (lopological, relative
topological) subsystcm of (o,B). A class X of (topolegical) a-systems of
B mappings of A is called quasi prumitive it the class X is closed with
respect to the direct products and (topological) subsystems and if it
is closed with respect to the relation =.

Now we prove a general existence theorem for models.

TurorEM 1. Let A be any topological model of type (F, R) and let 3
be any class of topological models of type (F*, k*). Moreover, let X be an
arbitrary quasi-primitive class of topological —a-systems of B-mappings
of A. Then there exists a topological free a-system of B-mappings of A in
the class X.

Proof. Let m = |A|a (1) and let n be a cardinal number such that
for every model B of type (F*, R*) and for every subset X of B with
|X| < m the submodel CpX of B generated by X has the power < mn.
Moreover, let m* = 22", Then each topological Hausdorff space Y having

() By |4| and a, where A is any set and « is any ordinal number, we denote
the powers of 4 and «, respectively.
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a dense subset X with |X|<n fulfils the relation |¥|<m*. Let X be
an arbitrary set with |E|>m* and let B be an arbitrary topological
model of type (F*, B*) with B < K. Let us consider the family of models
B, = B, where 1 runs through the set a(4, B) of all topological a-systems
¢’ of mappings of A into B such that (¢’, B)eX. Let op be the direct
product of all a-systems of mappings o’ea(4, B), i.e. oy is the unique
a-system of mappings of A into B4 such that p, oy = 4 for all lea(A4, B),
where p; is the natural projection of B*“4B) onto B, — B. Let o be the
direct product of a-systems of mappings op, Where B< K and B belongs
to the class 72X of all models B for which there exists an a-system ¢’ with
(¢'y B)eX. Then o is the unique a-system of mappings of 4 into the direct
product B, = P BB of all direct powers B*@B) with B « B and
with Ber2 such that oz = ppo, where p, is the natural projection of
B, onto B*®®_ Tet C be the topological submodel of the topological
model B, = P B*“® generated by the set o(d) — (Jo.(4), where

n<a
0 = {04, < a}, Le. C = Of o(A). Since X is quasi-primitive (0, C)eZX.
Now we prove that the pair (¢, C)is a topological free a-system of B-map-
pings of A in the class X. For this let (¢'y B') be an arbitrary a-system
of B-mappings of 4 belonging to the class X. Let us denote by D the
topological submodel of B’ generated by the set a'(4) = o, (4)

n<a
where o' = {7,, p<<a}. Since D has a dense subset Cj; o’(4) of the pow-

er <n, therefore [D| < m* and thus there exists a topological model B
of type (F*, R*) with B < F such that B is topologically strongly iso-
morphic to D. Let ¢ be a topological strong isomorphism of B onto D.
Then we have o' = ¢- o, where ¢ = iPapp | C with 2 =i-1¢’, and therefore
(¢, C) < (o', B'); the topological homomorphism q of C into B’ is unique,
since the set o(A4) generates C topologically. Thus we have proved that
the pair (g, C) is a topological free a-system of B-mappings of A in the
class 2, i.e. Theorem 1 is proved. ‘

THEOREM 2. Let A be any topological model of type (F', R) and let B
be any class of topological models of type (F*, R*). Moreover, let X be an
arbitrary quasi-primitive class of topological a-systems of B-mappings
of A closed with respect to the relative topological subsystems and let (o, C)
be the topological free a-system of B-mapwings of A in the class X which
exists by Theorem 1. Then the model C is algebraically generated by the set
o(4d) = U o,(4), where 0 = {o,, u << a}.

n<a
Proof. Let €' be the submodel of € algebraically generated by

the set o(A4). Let us consider €’ as a relative topological submodel of C.
Then, since X'is closed with respect to the relative topological subsystems,
the pair (¢, C’) belongs to the class X and thus (o, C) < (o, C'). Hence
there exists a unique topological homomorphism % of € into €’ such that

?
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o = he. Thus & is the identity mapping on the set o(4) = (Ja,(d) of
p<a
generators for €', and, therefore, » maps € onto €’ and h is the identity

mapping on the whole set C’. Since C’ is dense in C and h is a continuous
mapping of € onto €', therefore C = C’ and Theorem 2 is proved.
From Theorem 1 and Theorem 2 we obtain

TueoreEM 3. Let A be an arbitrary wmodel of type (F, R) and let B
be any class of models of type (F*, R*). Moreover, let X be an arbitrary
quasi-primitive class of a-systems of B-mappings of A. Then there exists
a free a-system (o, C) of B-mappings of A in the class X and the model C
18 generated by the sel o(A).

Proof. We consider the algebraical models as topological with the
discrete topology. In this way we obtain from the model A a topological

model fi, and from the classes B and X we obtain the classes B = (ii‘:B €B)
and X = ((a, ii'): (¢, B)eX). Obviously, the class > of topological a-sys-
tems of -‘fi-nmppings of A is quasi-primitive and it is closed with respect
to the relative topological subsystems, since all topologies are discrete.

Thus by applying Theorem 1 and Theorem 2 for fi, B and X we obtain
Theorem 3, and the proof of Theorem 3 is finished.

§ 5. Systems of mappings fulfilling the basic mapping-formulas.
Let us denote by L = L(F, R, X) and by L* = L(F*, R*. ®XX) the
first-order open logic with the identity corresponding to models of type (F', R)
and models of type (F*, R*) based on the set X and the set @ X X considered
as the sets of variables. Let X = (x, £ < 0*) and @ = (¢,, p < @). The
pairs (¢,, @¢) will be also denoted by ¢, (). 1f a formula p L (resp. qgel™)
is generated by (u,, &< ) (vesp. (g, (@), p < a, £ <)), then we shall
write p = p(ag, £ < B) (vesp. ¢ = q(pa(@), p< a, §<B)).

The formulas of the form

(i) p(me,§<ﬁ)_>Q(‘P,u($£);H<U,5<,B),

where p el and qeL*, will be called basic mapping-formulas of type (I, F;
F*, R*). Let ¢ = {0,, < a} be an arbitrary (topological) e-system of
mappings of a (topological) model A of type (F, R) into a (topological)
model B of type (F*, R*).

We say that the system o = {0,, p<< o} fulfils the basic mapping-for-
mula (i) provided that for each sequence (ag, & < p)eA? if the relation
pag, &< p) holds in the model A, then the relation ¢ (o, (as), p < a, &§ < B)
holds in the model B.

Let P be any set of basic mapping-formulas (see (i)) and let (o, B)
be a (topological) a-systems of B-mappings, where B is any class of
(topological) models of type (F*, R*), of a (topological) model 4 of type
(F, R) and let the a-system o fulfil every basic mapping formula belong-
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ing to the gset P. Then the pair (¢, B) is said to be a (fopological) a-system
of B-P-mappings of A. A (topological) free a-system of B-P-mappings
of A in the class A of all (topological) a-systems of B-P-mappings of A
is called a (topological) B-free a-system of B-P-mappings of A. If the pair
(¢, B) is the (topological) B-free a-system of B-P-mappings of A4, then
the model B is called (topological) a-P-free determined by A in the class 3,
and the a-system ¢ — a canonical a-system of P-mappings of A into B.
The model B (topological) a-P-free determined by A in the class 3,
it it exists, is uniquely determined up to (topological) strong isomorphisms.
The (topological) a-@-free model B determined by A in the class B, where
() is the empty set of basic mapping-formulas, is said to be (fopological)
a-free determined by A in the class B. Now we consider the problem of
the existence of a (topological) a-P-free model determined by A in the
class B. The existence of this model depends on the set P and the class B.
A formula ¢ = q(p. (@), p< «, E< f) in L* is called productable pro-
vided for any set T and any models By, teT, of type (F*, R*) and for
any family o; = {oy,, u < a}, teT, of a-systems of mappings of X into By,
if the relation g¢(oy, (), u << a, &< f) holds in the model B, for all teT,
then the relation q(aﬂ(mg), u<a, &< ﬁ) holds in the model B, where

B = PB; and the a-system ¢ = {o,, u< a} is the direct product of
te'

a-systems oy, tel. Liet us oberve that

(5.1) The atomic formulas of logic L* are productable.

(5.2) The conjunction of productable formulas is also a productable
formula.

A basic mapping-formula (i) is said to be productabie if the formula
q(rpy (2¢), < a, &< f) is productable. A class B of (topological) models
of type (IF*, R*) is called quasi-primitive if the class B is closed with
respect to the direct products of models, (relative topological) submodels
of models and with respect to (topological) strong isomorphisms. From
Theorem 1 and 2 we obtain

THEOREM 4. Let A be an arbitrary topological model of type (F', R)
and let B be any quasi-primitive class of tepological models of type (F™*, R*).
Moreover, let P be any set (possibly empty) of productable basic mapping-
formulas of type (F, R; F*, R*). Then there exists a {opological B-free
a-system (o, C) of B-P-mappings of A. Moreover, the model C is algebraically
generated by the set o(A4).

Proof. The class X of all topological a-systems (¢’, B’) of B-P-map-
pings of A is quasi-primitive and closed with respect to relative topologi-
cal subsystems, since B is quasi-primitive and P is a set of productable
basic mapping-formulas (resp. P is emtpy). Hence we obtain Theorem 4
from Theorem 1 and 2, which ends the proof.

From Theorem 4 immediately follows
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(5.3) For every topological model A of type (F, R), for every quasi-
primitive class B of topological model of type (F*, R*) and for every set P
of productable basic mapping-formulas of type (F, R; F*, R*) there exists
a topological a-P-free model C determined by A in the class 3.

The model C is algebraically generated by o(A), where o is the canon-
ical a-system of P-mappings of A into C.

Theorem 3 implies

TurorEM 5. Let A be an arbitrary model of type (¥, R) and let B be
any quasi-primitive class of wmodels of type (F*, R*). Moreover, let P be
any sel (possibly empty) of productable basic mapping-formulas of type
(F, R; F*, R*). Then there exists a B-free a-system (o, C) of B-P-map-
pings of A. The model C is generated by o(A).

Proof. The class X of all a-systems of B-P-mappings of A is quasi-
-primitive, since BV is quasi-primitive and P is a set of productable basic
mapping-formulas. Hence Theorem 5 follows from Theorem 3.

~

From Theorem 5 immediately follows

(5.4) Let A be any model of type (¥, R) and let P be any set of produc-
table basic mapping-formulas of type (F, R; F*, R*). Then for every quasi-
primitive class B of models of type (F*, R*) there exists an a-P-free model C
determined by A in the class B. The model C is generated by o(A), where o
is the canonical a-system of P-mappings of A into C.

Let P = O be the empty set. Then the empty set P = @ may be
considered also as a set of productable basic mapping-formulas and the
a-systems of B-G-mappings of A are identical with the a-systems of
B-mappings of A. Thus from Theorem 4, (5.3), Theorem 5 and from
(5.4) for P = O immediately follow the following theorems:

(5.5) Let A be any topological model of type (F', R) and let B be any
quasi-primitive class of topological models of type (F*, R*). Then there
exists a topological B-free a-system (o, C) of B-mappings of A. The model C
is algebraically generated by o(A).

(5.6) For every topological model A of type (F, R) and for every quast-
-primitive class B of models of type (F*, R*) there exists a topological a-free
model C determined by A in the class B. The model C is algebraically gen-
erated by o(A), where o is the canonical a-system of mappings of A into C.

(5.7) Let A be any model of type (F, R) and let B be any quasi-prims-
tive class of models of type (F*, R*). Then there exists a B-free a-system
(o, C) of B-mappings of A. The model C is generated by the set o(A).

(5.8) For every model A of type (F, R) and for every quasi-primitive
class B of models of type (F*, R*) there exists an a-free model C determined
by A in the class B. The model C is generated by the set o(A), where o is
the canonical a-system of mappings of A into C.
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§ 6. The common «-systems of B-P-mappings. Let 7' be any set
and let A;, for t<T, be a (topological) model of type (F, R) and let B
be any class of (topological) models of type (I'*, R*).

Moreover, let P be an arbitrary set of basic mapping-formulas of
type (F, R; F*, R*). A pair (¥, B), where BeB and ¥ = {g, teT} with
o = {o1,, u < a} for teT are any topological a-systems of P-mappings (i.e.
mappings fultiling every basic mapping-formula of set P) of (topologi-
cal) model A4, of type (¥, R) into B, is said to be a (topological) common
a-system of B-P-mappings of Ay, teT. Let (¥, B) and (¥', B') be two (topo-
logical) common a-systems of B-P-mappings of A, te7T. Then we say that

1° (¥, B) < (¥, B’) if there exists exactly one (topological) homo-
morphism % of B into B’ such that ¥ =AY, i.e. o, = hay for teT';

2° (¥, B) = (¥, B') if there exists exactly one (topological) strong
isomorphism & of B onto B’ such that ¥’ = h¥.

A (topological) common a-system (¥, B) of B-P-mappings of 4,,
tel', is called (topological) B-free if for every (topological) common
a-system (¥, B') of B-P-mappings of A;, teT, we have (¥, B) < (¥',B’).

Now we prove

THEOREM 6. For any family A;,teT, of topological models of type
(F, R) and for any quasi-primitive class B of (topological) models of type
(F*, R*) and for an arbitrary set P of productable basic mapping-formulas
of type (I, R; F*, R*) there exists a topological B-free common a-system
(¥, B) of B-P-mappings of Ay, tel.

Proof. Let A = S A, be the direct sum of models A, teT. Let
teT

(¢, B) be the topological B-free a-system of B-P-mappings of A, which
exists by Theorem 4. Let o; = 4,0, where 7, is the natural injection of
A, into A. Then the pair (¥, B), where ¥ = {0y, teT} is the topological
common B-free a-system of BVB-P-mappings of A, teT. The proof of
Theorem 6 is thus finished. '

The topological model B from Theorem 6 is said to be a topological
a-B-P-direct sum of Ay, teT and it is denoted by a-B-P- S A;. The topo-

teT
logical a-B-P-direct sum of A;, teT, is uniquely determined up to topo-
logical strong isomorphisms and it exists for any quasi-primitive class
B of topological models of type (F*, R*) and for any set P of productable
basic mapping-formulas of type (¥, R; F'*, R").
If we admit only the discrete topologies, then from Theorem 6 we
immediately obtain

THEOREM 7. For any family Ay, teT, of models of type (F, R) and
for any quasi-primitive class B of models of type (F*, R*) and for an arbi-
trary set P of productable basic mapping-formulas of type (F, R; F*, R*)
there exists a B-free common a-system (¥, B) of B-P-mappings of Ay, teT.
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The model B from Theorem 7 is called an a-B-P-direct sum of models
Ay, teT and it is uniquely determined up to strong isomorphisms. The
a-B-P-direct sums of models A, teT, exists for any quasi-primitive
class B of models of type (F*, R*) and for every set P of productable
basic mapping-formulas of type (F, R; F*, R¥).

§ 7. Special cases. Now we consider some special cases.

A. Q-mappings. Let @ be any set of basic mapping-formulas (i)
of type (I, R; F*, R*), where ¢(p.(®), u<<a, &< f) is a conjunction
of atomic formulas of the logic L* = L(F*, R*, @ x X). Then, by (5.2),
(O is a set of productable basic mapping-formulas and thus from The-
orems 4, 5, 6, 7, (5.3) and (5.4) we immediately obtain the following
theorems:

(7.1) For any (topological) model A of type (I, R) and for any quasi-
primitive class B of (topological) models of type (F*, R*) there ewxists a (to-
pological) B-free a-system (o, C) of B-Q-mappings of A. The model C is
algebraically generated by the set o(A).

(7.2) For any (topological) model A of type (I, R) and for any quasi-
primitive class B of (topological) models of type (F*, R*) there ewists a (to-
pological) a-Q-free model C determined by A in the class B. The model C
is algebraically generated by o(A), where o is the canonical a-system of
Q-mappings of A into C.

(7.3) For any family Ay, tel, of (topological) models of type (F, R)
and for any quasi-primitive class B of (topological) models of type (F*, R*)
there exists a (topological) B-free common a-system of B-Q-mappings of
Ay, teT, and thus there exists a (lopological) a-B-Q-direct sum of Ay, tel.

From Theorem (7.3) for R = R* = @ and ¢ being the set of basic
mapping-formulas (i;,) (see §8, section C) the existence theorems of
papers [8] and [10] follow.

B. B-homomorphisms of models. In this section we shall assume
that # = F* and R = R*. When considering mappings between (topo-
logical) models of the same type, we often admit only mappings that
are (topological) homomorphisms. A (topological) a-system o = {o,, u <a}
of mappings of a (topological) model A of type (F, R) into a (topological)
model B of type (F, R) is a (topological) a-system of homomorphisms
of A into B if and only if the set H of basic mapping-formulas

(1,) @ :.f(wh §< n(f)) — @ (X) :f(‘pu(mg)y §< ”(f)):
(i2) r(we, & < n(f)) =7 (pu(@s), &< n(r))

of type (¥, R; F, R), where feF, reR and pu< a, is fulfilled by the
a-system ¢. Hence the (topological) a-systems of H-mappings are ordinary
(topological) a-systems of homomorphisms. The set H is a set of prod-
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uctable basic mapping-formulas of type (F, R;F,R). Let P be an
arbitrary set of basic mapping-formulas of type (F, R; F, R). Then
the (topological) a-systems of P « H-mappings of a (topological) model A4
of type (F, R) into a (topological) model B of type (F, R) are called
(topological) a-systems of P-homomorphisms of A into B (%). Moreover,
the (topological) a-systems (o, B) of B-P v H-mappings of a (topological
model) A of type (¥, R), where B is an arbitrary class of topological
models of type (#, R), will be called the (topological) a-systems of B-P-
homomorphisims of A.

Sinee H is a set of productable basic mapping-formulas of type
(F, R: ¥, R), from Theorem 4 (5.3), Theorem 5, (5.4) and from Theorem 6
and 7 immediately follow the next theorems of this seection:

(7.4) For a (topological) model A of type (F, R) and for any quasi-
primitive class B of (topological) models of type (F, R) and for an arbitrary
set P of productable basic mapping-formulas of type (IF', R; F, R) there
exists a (topological) B-free a-systemn (o, C) of B-P-homomorphisms of A.
The model C is algebraically generated by o(A).

The model C from (7.4) is the (topological) a-P o H-free model
determined by 4 in the class B and it will be also called the (topological)
a-P-free with respect to homomorphisms determined by A in the class B.
Then we have

(7.5) For any (topological) model A of type (¥, R) and for any quasi
primitive elass B of (topological) models of type (F, R) and for an arbitrary
set P of productable basic wmapping-formulas of type (F, R; F, R) there
exists a (topological) model a-P-free with respect to homomorphisms C de-
termined by A in the class B. The model C is algebraically generated by the
set o(A), where o is the canonical a-system of P-homomorphisms of A
into C.

(7.6) For any family Ay, tel', of (topological) models of type (F, R)
and for any quasi-primitive class B of (topological) models of type (F, R)
and for an arbitrary set P of productable basic mapping-formulas of type
(F'y By F, R) there exists a (topological) B-free common a-system (¥, B)
of B-P-homomorphisms of A, teT.

The (topological) model B from (7.6) is the (topological) a-B-P o H-
-direct sum of 4,, teT', and it will be also called the (topological) a-B-P-direct
sum of Ay, te'l', with respect to (topological) homomorphisms. Then we have

(*) Let us observe that the P-homomorphisms in the sense of this paper are
ordinary homomorphisms fulfilling a set P of basic mapping-formulas. The P-homo-
morphisms in the sense of paper [8] are not ordinary homomorphisms, but they
are some ()-mappings, where @ is a set of basic mapping-formulas of the form (is,)
(see § 2, Section C), since in paper [8] we have denoted by P a Pp g-mapping which
induces a set @ of basic mapping-formulas of the form (ify)-
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(7.7) For any family A, teT, of (topological) models of type (F, R)
and for any quasi-primitive class B of (topological) models of type (F, R)
and for an arbitrary set P of productable basic mapping-formulas of type
(F, R; F'y, R) there exists a (topological) a-B-P-direct sum of Ay, teT,
with respect to (topological) homomorphisms.

Putting B =0 in (7.4) and (7.6), where @ is the empty set, and
assuming all topologies to be discrete, we obtain the existence theorems
contained in paper [5] of Schmidt. From the above theorems for R = 0
and P = @ also follow the existence theorems of paper [7].

C. The a-systems of mappings of topological spaces. Now we shall
consider the case F' =0 and R = @. Let X be an arbitrary topological
Hausdorff space. In the sequel, we shall consider XY as a topological
model of type (0,0). Let

(11) (I((P,u(mé)7 <y §< ﬁ)

be an arbitrary formula of the logic L* = L(F*, R*, ® X X). Moreover,
let ¢ = {g,, u < a} be any topological a-system of mappings of X into
a topological model B of type (F*, R*), i.e. o,, for u < a, is a continuous
mapping of the space X into the space B. We say that an a-system o
= {0, u < a} fulfils formula (ii) if the relation g¢(o,(®), u < a, &< f)
holds in the model B. Let B be an arbitrary class of topological models
of type (F*, R*) and let P be any set of formulas of the logic L*. Any
pair (o, B), where Be¢®B and o is a topological a-system of mappings
of X into B which fulfils every formula belonging to the set P, is said
to be a topological a-system of B-P-mappings of the space X. The topo-
logical free a-system (g, C) of mappings of X in the class of all topological
a systems of B-P-mappings of X is called the topological B-free a-system
of B-P-mappings of space X and the model C is said to be the topological
a-free model determined by X and P in the class B; P is called the set of
defining relation of C and the a-system o is said to be the canonical
a-system of P-mappings of X into C. A topological B-free a-system of
B-P-mappings of X, if it exists, is uniquely determined up to the relation
=, and a topological a-free model determined by X and P in the class 3,
if it exists, is uniquely determined up to topological strong isomorphisms.
Now we prove the next theorems :

(7.8) Let X be an arbitrary topological Hausdorff space and let B be
any quasi-primitive class of topological models of type (I*, R*). Moreover,
let P be any set (possibly empty) of productable formulas of the logic L*
= L(F*, R*, ®x X). Then there exists a {topological B-free a-system
(o, C) of B-P-mappings of X. The model C is algebraically generated by
the set o(X).
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(7.9) Let X be an arbitrary topological Hausdorff space and let B be
any quasi-primitive class of topological models of type (F*, R*). Moreover,
let P be any set (possibly empty) of productable formulas of the logic L*
— L(F*, R*, ®x X). Then there exists a topological a-free model C deter-
mined by X and P in the class B. The model C is algebraically generated
by the set o(X), where o is the canonical a-system of P-mappings of X
into C.

Proof. The clas: A of all topological a-syst:ms of B-P-mappings
of X is quasi-primi ive and closed with respect to relative topological
subsystem, since B is quasi-primitive and P is a set of productable for-
mulas of logic L*. Thus (7.8) follows from Theorem 1 and 2. Theorem
(7.8) immediately implies (7.9) and the proof of (7.8) and (7.9) is thus
finished.

Let Ay, for teT, be any family of topological models of type (F*, R*),
and let us assume that for every ¢, ue7' the models 4; and A4, have the
relative topological submodels A4, and A,; that are topologically strongly
isomorphic. Moreover, let hy,, be a topological strong isomorphism of Ay,
onto A,. Let B be an arbitrary quasi-primitive class of topological
models of type (F*, R*). Let us denote by P the set of formulas of the
logic L* = L(F*, R*, ® xX), where X = S 4, is the topological direct
sum of A4;, having the form Z

‘P/.z(<ta ay) = ‘P,u(<“; htu(a)>)7

where u < a, tel, ueT and aeA,,. Then, by (7.9), there exists a topo-
logical a-free model C determined by X and P in the class B. The model C
is called the topological a-B-free sum (resp. a-B-direct sum) of Ay, teT,
with identification of the submodels Ay, and Ay,

If all the submodels A, are empty, then C is the topological a-B-free
sum (resp. a-B-direct sum) of models Ay, teT (3).

Theorems 1 and 2 in paper [2] of Malcev immediately result from
(7.8) and (7.9). Indeed, putting a =1 (i.e. @ = {g,}), R* =0 in (7.8)
and (7.9) and take B as a primitive class of topological algebras of type
F*, we obtain from (7.8) and (7.9) the above mentioned theorems of
Malcev.

§ 8. Remarks and problems.

A. Let A be an arbitrary topological model of type (¥, R) and let B
be any quasi-primitive classes of topological models of type (F*, R¥).
Moreover, let P be any set (possibly empty) of productable basic map-

(3) This ‘mpulogical a-B-free sum (resp. a-B-direct %um) of Fy,tel, coineides
with the topological «-B-direct sum from § 6 for ¥ = I, B — R* and P> — 0.



MAPPINGS BETWEEN MODELS 263

ping-formulas of type (F, R; F*, R*). By theorem (5.3) there exists
a topological a-P-free model € determined by A in the class B. Consid-
ering the model 4 and the models of the class B without topology we
obtain, by theorem (5.4), an algebraic model €’ which is algebraic
a-P-free determined by A in the class B. Now consider the following
question:

(3,) Are the models C and C" algebraically strongly isomorphic?

Let o = {o,, p < a} and ¢ = {o,, p<< a} be canonical a-systems oy
P-mappings of A into € and of 4 into C’. Then we have (¢', C’') < (g, C)
algebraically, i.e. there exists a unique algebraic homomorphism A of C’
into € such that ¢ = ho’. Since the sets o(4) and ¢’ (A) generate alge-
braically the models € and €’, h maps C’ onto C. If h is a strong iso-
morphism of €’ onto €, then obviously we have a positive answer to the
question (8;). Let us observe that

(8.1) h is one-lo-one, i.e. h is an isomorphism of C' onto C (possibly
not strong) if and only if for any wnequality of the logic L* = L(F*, R*,
D xX)

(*) T(q)u(wﬁ)aﬂ<a7§<ﬁ) ¢ﬁ(¢u($‘$)al‘<aa5<ﬁ)

and for any sequence (ag, &£ < B)eA’ if the relation
T(“:;(“&)y p<a, < ﬁ) 7 "9(“,;(0'5)7 p<la, E< IB)

holds in the model C', then there exists a topological a-system o'’ = {0, , u < a}
of B-P-mappings of A into a model B such that the relation

7 (o (ag), p< ay < f) # B0,/ (ag), u< @, & < )

holds in the model B.

(8.2) h is a strong isomorphism of C' onto C if and only if h is an
isomorphism of €' onto C and for any term t(p,(xe), p < a, &< f) of the
logic L* = L(F*, R*, ®x X) and for any sequence (as, § < p)e A" if there
exists the element v(o,(ag), p < a, &< p) in C, then there exists an element
T(O‘;,(GLE), p<a,E<p)in C.

By (8.1) and (8.2) we have a sufficient condition for an affirmative
answer to question (S;). The problem ot determining sufficient and
necessary conditions for an affirmative answer to question (S,) is
open (P 608).

B. Let A be an arbitrary topological model of type (¥, R) and let B
be any quasi-primitive class ot topological models of type (F*,R").
Moreover, let P be any set (possibly empty) of productable basic map-

Colloquium Mathematicum XVII.2 q
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ping formulas of type (¥, R; F*, R*). Now let us consider the following
question:

(S;) Does there exist a topologicai a-system of B-P-ewtensions of A?

Let the pair (¢, C), where o = {0,, u << a}, be a topological B-free
a-system ot B-P-mappings of A (it exists by Theorem 4). By theorem
(4.2) question (S,) is equivalent to the question

(S3) Is the topological B-free a-system (o, C) of B-P-mappings of A
a topological a-system of B-P-extensions of A, i.e. are all the mappings o,,
u << a, topological homeomorphisms of A into C?

Now we prove

(8.3) If there exists a family (oy, By), where teT and o; = {oy,, p << a},
of topological a-systems of B-P-mappings of A having the property

(U)  for each element aeA and every neighbourhood U of a there exists
a finite subsel T' < T and there are neighbourhoods Uy, of elements
oy (@), where 1" and p << a such that

N (Uy) =T for p<a,

teT”
then there ewists a topological a-system of B-P-extensions of A.

Proof. Let (¢, B), where ¢ = {0,, u< a} and B = P B;, be the
teT

topological direct product of a-systems (oy, B;), teT. Obviously (o, B)
is a topological a-system of B-P-mappings of A. For all u < a, the map-
ping o, is one-lo-one. Indeed, let us assume that o,(a) = o,(b) and
a # b. Then we have

ot.(a) = oy, (b) dor all teT and a # b.

Let U be a neighbourhood of a such that b does not belong to U.

By condition (U) there are a finite subset 7' < 7 and neighbourhoods
Uy of elements oy,(a) = oy,(b), where te7", such that

mgl;tl(Ut,u) < LT’

teT”
and thus be U, which is impossible. Therefore o, is one-to-one. Moreover,
the mapping o,', for p < a, is continuous. Indeed, let us denote by U
any neighbourhood of the element ¢ = o, '(y), where yeB. By condition
(U) there are a finite subset 7’ < T and neighbourhoods U, of elements
oy, (a), where te1”, such that
(**) Nop' (Uy) = U.

teT’

We define V, = Mp;'(Uy,), where p; is the natural projection
teT”
of B onto B;. Then ¥V, is a neighbourhood of y and by (**) we have
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1

g,'(V,) = U and thus the mapping o,  is continuous. Therefore the
pair (o, B) is a topological a-system of B-P-extensions of A and the
proof of (8.3) is finished.

Theorem (8.3) gives a sufficient condition for an affirmative answer
to question (S,) (resp. (Sj)).

The problem of determining sufficient and necessary conditions
for an affirmative answer to question (S,) (resp. (S;)) is open (P 609).

C. Let A be any (topological) model of type (¥, R) and let B be
any (topological) model of type (I'*, K*). For any a-system ¢ = {0,, u < a}
of mappings of 4 into B we shall denote by &, the direct product of map-
pings o,, p < a. Then h, is the unique mapping ot A into the direet pow-
er B* such that p,h, == o, for all u < a. A (topological) model D of
type (F, R) is said to be a (fopological) P-product over B, where I’ is a set
of basic mapping-formulas of type (¥, R; F*, R*) and B is a (topological)
model of type (F*, R*), if it has the following properties:

1° D = B“.

2° For any (topological) model A4 of type (#, E) and for any (topo-
logical) a system o of mappings of A into B the a-system o is a (topolo-
gical) a-system of P-mappings if and only if the mapping k, is a (topo-
logical) homomorphism of 4 into D.

Let P be an arbitrary set of basic mapping-formulas of type (£, R:
F*, R*). Let us consider the following property of P:

(S,) Ewvery (topological) model B of type (F*, R*) has a (lopological)
P-product over B.

The general problem of determining all sets P having the property
(S,) is open (P 610). Now we shall give some sufficient conditions for
(S,). Let us consider the following basic mapping-formulas of type (I, F;
F* R*):

(ifg) €T :'.f(m‘fa g "(f)) > P (®) = Tfo (¢’u(m§)7 w<a, E<n (f))-
(i) 1‘(375, < 77’('7')) >y (‘ch(a’e)y p<a,E< '”/('r))y

where fel, rek, o< a, 14, is a term of logic L* = L(F*, R*, & X X)
and ¢, is a formula of logic L* = L(F*, R*, ® x X).

Now we shall prove

(8.4) Ewery set P of all basic mapping-formulas of type (F, B; I'*, I*)
having the forms (i) and (i,), where feF and reR and o< a, has prop-
erty (S,).

Proof. Let B be a model of type (F*, R*). The model D = (D,

(fp)feF, (rp)reR> of type (F, R) such that
1° D= B,
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2°  fplre, E< n(f)) = x if and only if for all p < o we have

200) = 15 (xe(0), < @, &< n(f)),

3°  rp(re, £< n(r)) holds in D if and only if the relation g,(xe(u),

p< a, &< n(r) holds in model B,
is the P-product over B.

The basic mapping-formulas of the form (iz,) for algebras with finitary
operations are congidered in paper [1]. The basic mapping-formulas of
the form (i;,) for arbitrary quasi-algebras are considered in my papers
[10, 8].

D. Let P be any set of basic mapping-formulas of type (¥, R; F*, R*).
Let A be any model of type (#, R), and, moreover, let B be any model
of type (F*, R*). A subset ¥ of 4 is said to be P-B-independent it any
a-system o = {o,, u < «} of mappings of ¥ into B may be extended
to an a-system ¢ = {d,, u< a} of P-mappings of (', Y into B. The
P-independence for R = R* = @ and for the set P having only formulas
of the form (i) is considered in my paper [10] and it has similar properties
as the independence with respect to homomorphisms (see [3, 4]). We
shall consider the notion of P-independence for arbitrary set P in the
next paper.

E. The basic mapping-formulas of type (F, R; F*, R*) obtained
by using the set @ = {gp,, p < a} are called a-basic mapping-formulas
of type (F, R; F*, R*). Let « and y be any ordinal numbers with a < y.
Then the a-basic mapping-formulas of type (F, R; F*, R*) may be con-
sidered as some y-basic mapping-formulas of type (¥, R; F*, R*). Let A4
be any topological model of type (F, R) and let B be any quasi-primitive
class of topological models of type (F*, R*). Moreover, let P be any set
(possibly empty) of productable a-basic mapping-formulas of type
(F, R; F*, R*). We consider the set P also as a set of y-basic mapping-
formulas, where 7 > a. By Theorem 4 there are topological B-free
a-system (o, C,), where ¢ = {o,, up << a}, of B-P-mappings of A and
a topological B-free y-system (o', C,), where o' = {o,, u < y}, of B-P-
mappings of A. Let us observe that an a-system ¢ |a = {o,, 4 < a} is
a topological a-system of P-mappings of A4 into C,, and thus there exists
only one topological homomorphism h,, of €, into €, such that a,
— hgy 0, for u < a. Moreover, every topological y-system ¢ = {a,’, u< y}
of mappings of A into €, such that ¢, = ¢, for p < « is a topological
y-system of P-mappings of 4 into C,. Therefore there exists a topolo-
gical homomorphism #,, (not unique) of €, into €, such that o, = h,,0,
for u < a. Hence we have o, = h,,h,, 0, for all p<<a, ie. 6= lyuhg, 0,
and thus h,.h,, = I, where I is the identity mapping of C, onto C,.
Therefore h,, is one-to-one (possibly not onto) mapping of C, into C,.



MAPPINGS BETWEEN MODELS

267

Moreover, the mapping h, is continuous, since if ¢ = hg,'(d), then
¢ = h,,(d); but h,, is continuous. Thus we have proved the theorem

(8.4) The mapping h,, is a lopological isomorphism (possibly not strong)

of C, into C, and the reverse mapping ha, is continuous.

Since we have o, = hg,h,.0, only for u< a, it may happen that
hoylye # 1", where 1" is the identity mapping of C, onto C,. Now let us
consider the following property of the pair (B, P):

(S;) For ordinal numbers y > a and all topological models A of type
(F, R) the a-P-free topological model C, determined by A in the class 3
and the topological y-P-free model C, determined by A in the class B are
topologically strongly isomorphic.

The general problem of determining all the pairs (B, P) having
property (S;) is open (P 611).

We do not know if there exist pairs (B, P) which satisfy (S;).

Now we prove

(8.5) Let B be an arbitrary quasi-promitive class of topological models
of type (F*, R*) having operations only, and let A be an arbitrary topolo-
gical model of type (F, R). Moreover, let P be any set (possibly empiy) of
productable a-basic mapping-formulas of type (F, R; F*, &*) and let C,
and C,, where y > a, be topological a-P-free and y-P-free models deterimined
by A in the class B. Then the mapping hq, is a topological strong isomor-
phism of €, onio the relative topological submodel of C, algebraically gen-
erated by the set \ ) o,(A), where ¢" = { a,, <<y}, is the canonieal y-system

p<a
of P-mappings of A onto C,.
Proof. Theorem (8.5) immediately follows from (8.4) and from
the proof of (8.4). Moreover, let us observe that (o, C,) = (0| ey 1C" )y
where €’ is the relative submodel of C, algebraically generated by

Ja.(4), ¢'|a = {g,, p< a} and ¢ is the canonical a-system of P-map-
n<a

pings of A into C,, since we have o, = hy0, for u<a, where o
= {04, pp << a}.
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