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Introduction. Let X be a topological space, F a Banach space. Let
C(X, E) be the space of continuous functions f: X — E. Suppose F is
a map from X into subsets of F. Define the distance of an feC(X, E)
from F by the relation

(0.1) o(f, F) = sup sup [|f(x)—yl|
xeX YeF ()
where || || stands for the norm in F£.

The main result of this note is concerned with the existence of the
best approximation of a set-valued function F' by a continuous point-
valued function. That is we give conditions (cf. Theorem 1, Section 2)
under which there exists an f,eC(X, E) such that

(0.2) o(fo, F) = inf o(f, F).
feC(X,E)

In Section 3, we apply this result to answer the following question
posed by Pelczynski [5].

Let X, Y be compact topological spaces and let ¢: ¥ — X be a con-
tinuous surjection. By ¢°: C(X, E) — C(Y, K) we denote the conjugate
map given by ¢°f = fo ¢ if feC(X, ) (£ as above is a Banach space.)

QUuEsTION. For an arbitrary but fixed heC(Y, H), let

(0.3) afh, 9°C(X, B)) = inf lh—g,

where ||h— g|| = max|k(y)— g(y)|. Does there exist a g,e¢*C (X, E) such
that “ |

(0.4) d(h, p°C(X, B)) = [[h—goll ?

The answer to this question is affirmative if ¥ is uniformly convex
and is given by Theorem 2.
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The last section concerns again the existence of the best approxi-
mation of a set-valued function F by continuous functions but (0.1)
is replaced there by an essential supremum-type distance. Theorem 3
of Section 4 contains as a special case a recent result due to Holmes and
Kripke [2] concerning approximations of real-valued bounded functions
by continuous functions.

The proof of our main result strongly depends upon a theorem of
E. Michael on the existence of continuous selections. This theorem along
with some basic definitions is provided, for the convenience of the reader,
in Section 1.

It is a pleasant duty for the author to thank Professor Z. Semadeni
for calling the author’s attention to Pelezynski’s problem and Professor
A. Petezyniski for a stimulating discussion and, in particular, for supplying
a list of references connected with his problem.

1. Notation and definitions. Throughout this note X, ¥ will denote
topological spaces, E a uniformly convex Banach space. Let us recall
that a Banach space F is uniformly convex (Clarkson [1]) if for any ¢ > 0
thereis a = d(e) > 0 such that if |z| = |ly|| = 1 and |z —y| = (2, y < E),
then [(z+y)/2|| < 1— 0. Without any loss of generality we may assume
that d(e) is non-decreasing and, manifestly, that d(e) — 0 as & — 0.

By 2%, K(E) and O(K) we denote the set of all subsets of H, closed
subsets of K and closed convex subsets of H, respectively.

Let F' be a map of X into 2. The map F is upper semicontinuous
(u.s.c.) if the set {#|F(x) < G} is open in X for each open G < E. Simi-
larly, F is lower semi-continuous (Ls.c.) if the set {x | F(z) ~ G % @} is
open in X for each open G c E.

Put
(1.1) r(x, F') = inf sup|ly —2||
YekE zeF'(x)
and
(1.2) r(F) = supr(z, F).
reX

For an arbitrary F,r(x, F) for some x or r(F) may be infinite.
Since for each feC (X, F) we have the inequality

sup |If (#) —y|| = r(x, F) for each xeX,

Yek' ()
therefore by (0.1) and (1.2) we get
(1.3) o(f, F') = r(F) for each feC(X, E).

Hence, also,

(1.4) o(F) = inf o(f, F) = r(F).
1C(X,E)
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By B(xz,r),xeH,r >0, we denote the open ball centered at x of
radius r, and by B(z,r) the closed ball.

The following two propositions describe properties of uniformly
convex Banach spaces we will need later. Proposition 1 is a slightly
changed lemma given in [1], p. 3, but the proof of it, which we include
here for convenience of the reader, is almost the same word for word.

ProPOSITION 1. Let E be uniformly convex. If |xy—x,| = &, ©,, To€ K,
then, for any r >0,

(1.5) B(%— (xl{Lmz), (1— a(e/r))»r) > B(ay,r) ~ Bz, 7).

Proof. Let y belong to the right-hand side of (1.5). Without any
loss of generality we may assume that y = 0. Therefore, to prove (1.5),
we have to show that

(1.6) (2,4 24)/2]] g(l—é(e/r))r,

if ||loy|| < 7, ||lzo]| < 7 and |v,— x| > e. It is easy to see, by a proper dilation
or contraction, that to prove (1.6) it’s enough to show that

(L.7) @i +22)/2] K 1—6(e) if [ly]| =1, [lel] <1, [lz—@l| = &

There exist ¥,,%, on the unit sphere such that x, = 4,y;+ A:¥s,
where 1,2, >0, 4;+2, =1 and [o,— Y.l =& [ —¥ll > e

That such v,, y, exist, follows from the existence of a supporting
hyperplane to the ball B(z,, |x,— x,||) passing through x,. By definition
of uniform convexity we have

oy + @2) /2] < Ayll(21+y2)/211+ A2 (2, 4 92) /2]
< (1—08)+2,(1—9) =1—09,

which completes the proof.

ProposITioN 2. If E is wniformly convex, r > 0, x, yeE fived, then
there exists a function n(e) > 0 defined and non-decreasing for ¢ > 0 and
tending to 0 as & — 0 such that

(1.8) B(w,r) ~ B(y,r+¢) < B(z(n(e)),7),
where 2(n) = y+n(z—y)/le—yl.

Proof. Put
(1.9) n(e) = inf{y | B(z,r) ~ B(y,r+e) = B(z(n),7)}.

Since # = |lr—y|| belongs to the set in the right-hand side of (1.9),
n(e) is well defined. It is easy to see that “inf” in (1.9) can be
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replaced by “min”. Therefore to prove Proposition 2 it is enough to show
that #(e) defined by (1.9) tends to zero as & — 0. Manifestly, by (1.9),
n(e) is non-decreasing.

Suppose that lim 5(e) = , > 0. Let ¢ > 0 be such that

e—>0

(1.10) 0 <mp <m(e) <3mp/2 I & <e.
By (1.9), Propositions 1, 2 and (1.10) we have for each & < ¢,

B(a,r) ~ B(y,r+¢) = B(z(n(e)), r+e) ~ By, r+e)
= B(3(2(n(e)+9), (1— 8 (nofr+ e0)) (r+e)).-

Choose & > 0 such that (1— &(ne/r+ &))(r—+¢&,) <7, and note that
(z(n(s))—[—y)/z = #(n()/2). This and the last inclusion prove that 7(e;)/2
belongs to the set in the right-hand side of (1.9). But #%(e;) > 0, thus
a contradiction with (1.9), and hence 7, =0, which was to be proved.

Finally, let us state a theorem due to Michael [3] to be used in the
next section. Before, let us recall that F: X — 2% admits a (continuous)
selection if there is an feC (X, E) such that f(z)eF(x) for each zeX.

THEOREM OF MICHAEL [3]. The following properties of T-spaces are
equivalent:

(a) X s paracompact.

(b) If E is a Banach space, then every l.s.c. F of X into C(E) admits
a selection.

2. The main result. We will now prove the following

THEOREM 1. Suppose that X is paracompact and E is uniformly convex
Banach space. For each w.s.c. map F: X — K (E) there exists a best approxi-
mation by functions from C(X, E); that is, there ewists an f,eC(X, E)
such that

o(fo, F) = inf o(f, F).
feC(X,E) )

Moreover, for each such f, we have the equality o(f,, F) = r(F).

Proof. Note thatif r(F) = oo, then by (1.3) and (1.4) o(f, F') = + oo
for each feC(X, E) and the Theorem is trivial. Thus the only interesting
case is if 0 < 7(F) < + oo.

Define
(2.1) H(z) = {peB | F(x) = B(p,r(F))}, weX.

We shall prove first that H(z) is not empty closed and convex for
each zeX and that the map H: X —» C(E) is Ls.c. The closedness of H(x)
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follows from closedness of F(x) and (2.1). Suppose that y,, y,eH (%), A,, L,
>0,A,+4, =1. Then by (2.1) we have

ly— A1y — AWl < A4 lly—will+- A lly—9.ll <7 (F) for each yeF(z),

thus H(x) is convex. If r(x, F) < r(F), then clearly H (z) # @. Suppose
then that r(z,, /') = r(F) for an x,eX. Put

(2.2) H,=|p| F(x) = B(p,r(F)+y)}, y>o.

The set H, is not empty for each y > 0. Let ¢ > 0 be arbitrary and
~choose y such that

(23) = (1= 8(eflr () +9))) r (B)+7) < 7(B).

Since 6 (e/r(F)-+y) = (e/r(F)+1)if y <1, thereisa y with 0 < y < 1
satisfying (2.3). If (2.3) holds true and p,, p,eH,, then |p,—p.| < e
Indeed, suppose the contrary. Then by Proposition 1, (2.2) and (2.3)
we have F(r) = B((p,+ ps)/2,7,). Thus r(zy, F) <r, <r(F), which
contradicts the assumption that »(x,, #) = r(F). We have proved that
the diameter of H, is small if y is small. Since H, < Hy if y < 4, the

intersection (1) H, is not empty and reduces to a single point p,. It is
7>0

obvious that F(z,) = B(p,, »(F)) and that H () = {p,}. Thus H(x) is
not empty for each zeX.

To prove that H: X — C(FE) is lLs.c. consider the set
(2.4) A = {rxeX | H(zx) ~ G +0),

where G < K is a fixed open set. Let xyed and pyeH (x,) ~ ¢. Since F
18 u.8.c., there exists, for each ¢ > 0, a neighborhood N (¢) of x, such that

(2.5) F(x) = B(py, r(F)+¢e) if weN.

Let & be such that #5(e) of Proposition 2 is smaller than %,, where
B(pg, n9) = G. By Proposition 2 and (2.5) we have

(2.6)  F(2) < B(py, (1) ~ Blpo, r(F)+¢) = B(z(n(e), r(F)),

where p, e H () and 2(5(e)) e B(py, 70)- By (2.6), 2(n()) e H (2), too, whence
B(po, 1) ~ H( z) ¢ G ~ H(x) # 0. Since x is an arbitrary point of N,
this shows that N = A. Hence A is open and H is l.s.c.

We can now apply Michael’s Theorem, by which there is an f,eC(X, E)
such that

fox)eH(x) for each weX.

Colloquium Mathematicum XIX.2 19
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This, (2.1) and (0.1) imply that o(f,, #) < r(¥), which in turn together
with (1.3) shows that o(f,, ¥) = r(F). This and (1.4) proves that f, is
the best approximation as well as that

r(F) = inf o(f, ).
1eC(X,E)

This completes the proof of Theorem 1.

3. An application. We will now apply Theorem 1 to answer Pel-
czynski’s question stated in the introduction. In this section, X and Y
are compact, ¢: ¥ — X is a continuous surjection. By ¢°: C(X, E)
— (Y, E) we denote the conjugate map given by ¢°f = fo ¢ if feC (X, E)
(£, as above, is a uniformly convex Banach space).

Note that each geg®C (X, F)is constant on ¢~ () = {ye Y | ¢(y) = x}
for every xeX. We have for each heC(Y, F) the inequality

(3.1) s(h) = sup inf sup [h(y)—2] < d(h, ¢"(X, E)),

zeX 2K yepT l(x)

where d is given by (0.3). Indeed,

lh—gl| = sup sup [[h(y)—g(y)|| = sup inf sup [|h(y)—z| = s(h),
zeX yep™ 1(x) zeX  2eE yep ™ 1(x)
thus (3.1) follows from (0.3).

THEOREM 2. For each heC(Y, ) there exists the best approximation
dr of h by functions from ¢°C (X, E); that is, g, e°C (X, H) and is such that
lh—gul] = d(h, o0 (X, E)). Moreover, each such g; satisfies the equality
b — gull = s(h).

In the case that I is the real line, the second part of Theorem 2
was given by Pelczynski [5] and a proof of the first part due to S. Mazur
can be found in [7], p. 20 (cf. also [2]). In the case that F is the complex
plane, the second part of Theorem 2 was obtained by Pelezynski [6].

Proof of Theorem 2. Because of (3.1) it is enough to prove the
existence of a gep?C (X, F) such that

(3.2) lh—gll = s(h).
Put
(3.3) F(x) = {zeB |2 = h(y), yep~ ' (2)}.

Since ¢ is continuous and Y is compact, ¢~ '(x) is also compact for
each xeX, and so is F(x). Hence (3.3) defines a map F: X — K(E).
Suppose now that f,eC(X, F) is such that

(3.4) ¢(fo, ) = r(F),
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where ¢ and r are given by (0.1) and (1.2), respectively. Put g, = ¢°f,
= fy0 ¢. Then by (0.1) and (3.1) we get

o(fo, F') = supmax [ —fy(@)|| = sup max [|k(y)—go(y)| = [h— goll-

TeX zeF(x) TeX Yep 9:)

On the other hand, by (1.1) and (3.1) we have

r(#) = supinfmax ||y —z|| = sup inf max lh(y)—=2|| = s(h).

weX zeF YeF'(x) zeX zeE yep ()

Thus we see that if f,eC (X, E) satisfies (3.4), then ¢, = f, o ¢ satis-
fies (3.2). Hence to complete the proof it is enough to check, because
of Theorem 1, that ¥ defined by (3.3) is u.s.c. To prove this let us take
an open subset ¢ < E. By (3.3), F(z) c @ if and only if ¢~ (2) = h~1(G).
Since & is continuous, 27 (G) is an open subset of Y. Now, it is easy to
check that

(3.5) A ={weX | g7 (@) = hH(G)} = X\p(Y\1~1(G)).

Since h~'(@) is open and Y is compact, ¥\h~!(Q) is also compact
and so is (p(Y\h"l(G)), because ¢ is continuous. Hence the set 4 given
by (3.5) is open. But A = {x<X | F(x) = G}. Therefore F is u.s.c. and
Theorem 1 completes the proof of Theorem 2.

4. Approximation of bounded functions. In this section, F is a
Euchdean space, X is paracompact. Let u be a measure defined for all
open subsets of X and such that u(U) > 0 for each open U < X. We
denote by A4 the family of all u-null subsets of X. Consider a map
F: X - 2%, We say that F is locally u-essentially bounded if for each zeX
there is an open set U = X and a gu-null set N such that zeU and Fip\
is bounded (F(x) is contained in a ball for each xe UNN).

Let feC(X, E). Put

(4.1) ox(f, F) = esssup ||f(x)—yl.

xeX,YeF ()

By the latter we mean, as usual,

(4.2) inf  sup [|f(#)—yll.
NeA” Z‘EX\N,ZJEF(ZL‘)

Now we define a distance of F from C(X, E) by

(4.3) diSt(F7 c(X, E)) = j(!i(I}XfE)Q*(f’ )
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In this section we are interested in the following question: if dist
(¥, 0(X, B)) is finite, does there exist an f, for which the infimum in (4.3)
is attained?

A particular case of this question has been recently answered in
the affirmative by Holmes and Kripke [2], namely the case when F
is a bounded function of X into F and E is one-dimensional. The theorem
which follows gives an answer to the question in a more general case.

THEOREM 3. Let X, E and u be as described above. Suppose that F
is @ map of X into 27 and assume it is locally u-essentially bounded.
Then there ewists an f,eC(X, B) such that

(4.4) ox(fo, F) = dist(F, C(X, B)).

Theorem 3 is a consequence of two lemmas given below and of
Theorem 1.

LeMMA 1. Define
(4.5) Fue)= M N U Fy),

Ue#(x) NeA YeUN\N
where % (x) stands for a neighborhood base at x, ¥ is the family of p-null
subsets of X and the bar indicates the closure.
Then Fy is a u.s.c. map of X into K (E).

Proof. Consider the family (for an xeX fixed)
(4.6) {Font={ U F(y)} if Ue#(z) and Nes .
yeUNN

Family (4.6) has the finite intersection property, that is, any finite
subfamily has a non-empty intersection. Since ¥ is assumed to be locally
essentially bounded and since # is finite-dimensional, there is a member
of (4.6) which is compact, and without any loss of generality we may
assume that all members of (4.6) are compact and contained in a fixed
compact ball. Then by the finite intersection property, family (4.6) has a
non-empty intersection which is exactly the set Fy(x) given by (4.5).
Hence (4.5) defines a map of X into K (E). Let us now take an open
subset ¢ of K and suppose Fy(r) = G for an xeX. Again by the finite
intersection property there is an Fyy o F.(z) and Fyxy =G The
latter together with (4.5) implies that F.(z) < G for each xeU. Thus
we have proved that if an x, belongs to the set 4 = {x | F(») = G},
where G < FE is open, then there is an open U < X such that z,e U < A4,
whence A is open and ¥, is u.s.c., which was to be proved.

LEMMA 2. If F is locally essentially bounded and F is defined by (4.5),
then we have the inequality

(4.7)  o(f, Fy) = dist(F, O (X, B)) >r(F) for each feC(X, E),
where r 18 defined by (1.2).
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Proof. Let us fix feC(x, E), 2yeX and &> 0. Put o(f, F,) = o,.
By (0.1) and (4.5) there is an Uj,e#(x,) and Nye # such that

(4.8) Fy(2) © Fy,n, = B(f(), 0o+¢) it wel,.

It follows from formula (4.8) that sup ||f(z)—y| < 0,+ &, where the
supremum is taken for ze U\ N, and y ¥ (x), which in turn implies that
ox(fy, F) < go+¢ (cf. (4.1) and (4.2)). Since ¢ is arbitrary, we have
o(f, Fx) = o4(f, ') and the first part of inequality (4.7) follows.

On the other hand, by (4.8) and (1.1) it is easy to see that

sup  ||f(x)—yll = r(z, Fy) if zel,.
mcUO\NO,TIGF(w)

Therefore by (4.1) and (4.2) we get
os(fy F) = supr(e, Fu) = r(F,).

xreX
Hence, by (4.3), dist (F, C(F, X)) = r(F,) and the proof of Lemma, 2
1s completed.

Proof of Theorem 3. It follows from Lemma 1 and Theorem 1
that there exists an f,eC(X, F) such that o(fy, F4«) = r(F,). Using in-
equality (4.7) of Lemma 2 we see that the same f, satisfies (4.4), which
was to be proved.
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