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WEAK AUTOMORPHISMS OF LINEAR SPACES
AND OF SOME OTHER ABSTRACT ALGEBRAS

BY

J. DUDEK AND E. PLONKA (WROCLAW)

The purpose of this paper is a description of weak automorphisms
of linear and affine spaces of v-algebras of dimension >3 (see [1] and
[3]). Some of our results were obtained independently by J. R. Senft
in a forthcoming paper (e.g. Proposition (0) and a theorem similar to
Theorem 1.2). Let A = {A4; F) be an algebra (cf. [2]). A permutation
7 of the set A is called a weak automorphism of the algebra U if the mapping
*: f — f* defined by the formula

X @1y ooy @) = tf (7 2y, o0y TR ,)

(cf. [1]) is a permutation of the set A(F) of all algebraic operations of
the algebra A. We denote in the sequel the set of all automorphisms
(respectively, weak automorphisms) by Aut(4) or Aut(%A) (respectively,
Aut*(A)). If two algebras A and B are isomorphic, we write A == B.
The group of all permutations of a set X will be denoted by S(X).

Let us observe that if 7 is a permutation of A, then the identity

f*(wn ey Xy) = Tf(T_lmu ceey T_la"n)

is equivalent to
T (rxy, .., T2,) = f(®ey ..n, T,).
Therefore, if acAut(¥) and teAut* (%), then
v arf (@, ey @) =T ra fM vy, ..., T,)
= t_lf*(atwl, ey QTX,) =f(‘5—la‘f~’1/'1, ceey z‘larmn).

Hence we have the following proposition:

(0) For any algebra W, the group Aut (A) is a mormal subgroup of
Aut* ().
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1. Linear spaces. Let V be a linear space over the field 4. One can
consider it as an algebra

B = (Vi+, {Az}ien)-
We assume in the sequel that V = {0}.
THEOREM 1.1. Let B = {a,};.; be a fized basis of a linear space B.
Then the mapping
Aut* (B)>7 — {a,, p.> cAut(B) X Aut(4),
where
a.(a;) = v(a;) for a;eB
and
()& = T(A(v7 @) for Aed, weV,
establishes a one-to-one correspondence between Aut*(B) and Aut (B)X Aut (A4).
Therefore t is a weak automorphism of B if and only if it is of the form

n

(*) 7 () =2 (Phe) 2(ag,),

n
where © = Y Ma,, , acAut(B), pcAut(A).
k=1

Proof. First we prove that if reAut*(B), then v has the form (*).
Observe that every m-ary algebraic operation of the algebra B has the

form Y A,x,, where i,e4 and 0 is the only .algebraic constant of this
k=1

algebra. Thus 7(0) =0 and t(z+y) = 4,7(®)+ A,7(y). Putting firstly

2 = 0 and secondly ¥y = 0 in the last equality, we obtain

(1.1) T(r+y) =7(@)+(y).

Further, for every Ae A (A # 0) there exists exactly one element
2* e such that v(Az) = A*7(x). Let us put

(1.2) @, (4) = A* for A #0, and ¢,(0) = 0.

Obviously, @,e8(A), since the mapping f—f* is a permuatation
of the set A™(A) for n = 0,1,2,... We show that ¢ eAut(A).
Indeed,

T((Allz)w) = q’r(ﬂlﬂ'z)TW) = 7(11 (/125”)) = @.(A) (A7) = (A1) @ (A2) T(2),

Whehce
@1(1112) = (P,(ﬂ-l)%(lg)-

Using (1.1) we analogously prove that
@ (A4 22) = @ (A1) +@.(4s).
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Let an element ¢V be of the form
x = Zlkaik, where a; B.
k=1 .

From (1.1) and (1.2) we conclude that

n

T(@) = D (k)T (a5,),

k=1

where {r(@;)};.r, is a basis for the space V. But the mapping a; — 7(a;)
can be uniquely extended to an automorphism a, of the algebra B such
that a.(a;) = 7(a;) for iel. Hence

(@) = ) (M) a.(ay,),
k=1

and 7 is of the form (*).

In order to show that the mapping t defined by (*) is a weak auto-
morphism of the algebra B it is enough to verify the conditions re
Aut KV; +, —>) and 7(dx) = ¢(4)7r(x), where ¢eS(A). We verify, for

example, the second condition. Let » =kZ M@y, . Then
=1

(aa) = 1( D () ay) = Do) ala,) = YeRe(h) alay) = ¢(d)s(@).
k=1 k=1 k=1

In a similar manner one can prove the other part of the theorem.

THEOREM 1.2. The group Aut*(DB) is the normal product of the group
Aut (B) and of the group Aut(A).

Proof. From Theorem 1.1 we know that the correspondence 7 « (a,, ¢,)
is one-to-one. Let a be an automorphism of V such that

n
a(a) = Zlkaik, where a;, a;, <B.
k=1
Let «® be the linear extension of the mapping
n
ai—>2‘¢(1k)aik, where ieI and peAut(A).
k=1
It is not hard to check that o is an automorphism of V. Moreover,
one can verify that the mapping ¢ — o is a monomorphism of the group
Aut(A) into the group Aut(Aut V). It is also clear that if H(r,) = (a,, ¢;>

and H(1,) = {a,, ¢,», then H(r,7,) = <a,¢,¢:>, where daeAut (V).
We show that @ = a,af!. Indeed, let

ay(a;) = Zlk“ik-
k=1
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Then
azt(a;) = Z‘Pl(lk)“ik and @ a3'(a) = Z (P14) @1(ay,) -
k=1 k=1
But

a(a) = v(a(ay) = 7( D hay) = D oulk)an(ay).
k=1 k=1

Since a and a,al! are identical on the vectors of the basis B, they
are identical everywhere, and the theorem follows.
From this theorem follow immediately:

COrROLLARY 1. We have
Aut*(V)/Aut(V) = Aut(A4).
COROLLARY 2. If V is a vector space over a prime field A, then
Aut* (V) = Aut(V).
The following corollary follows from the fact that the mapping

@ — o is a monomorphism:

COROLLARY 3. The group Aut*(V) is the direct product of the groups
Aut (V) and Aut(A) if and only if the field A has only trivial automorphism.

2. Affine spaces. Let V be an affine space over the field 4. One can
consider V as an algebra

B = (V; {Ar+ uy}, where A, ued and A+pu =1).
Of course, all algebraic n-ary operations of B° are of the form

n n
Y My, where Y A4, =1, A,ed, and » = 1,2, 3 ... Theorems for a linear
k=0 k=1

space are true (after a modification) also for an affine space.

As it is known, an arbitrary automorphism of an affine space is of
the form ¢+ ¢, where ¢ is an automorphism of the linear space V and ¢ is
a fixed element of V. There was a conjecture of S. Fajtlowicz that weak auto-
morphisms of the algebra B° have analogous form.

THEOREM 2.1. A mapping o of V onto itself is a weak automorphism
of the algebra B° if and only if it has the form ¢ = v+ ¢, where v e Aut*(B)
and ceV.

Proof. Let peAut*(B°. Then

(2.1) e(@+y—2) = Ae(®)+ o(¥))+ pe(?),
where 24+ u = 1. For 2 = y we have o(x) = Ao(x)+ (A+ u)o(y), whence
2 =1 and u = —1. Substituting these values together with 2 = 0 into

(2.1) we obtain
(2.2) e(z+y) = e(®)+ e(y)—0(0).



WEAK AUTOMORPHISMS 205

For an arbitrary AeA there exists exactly one element A*eA such
that

(2.3) e(Ar+(1—2)y) = 2 o (2)+(1—2%) e (y).
Setting
@,(A) =A% for Aed

it is easy to see that ¢,eS(A). Putting y = 0 in (2.3) we get (after a cal-
culation)

(2.4) 0(42) = g,(2)7,(%) + 2(0),
where 7,(x) = o(x)— 0(0).
Now we prove that 7,eAut*(B). Indeed, 7,¢S(V), since ¢S (V) and,
according to equality (2.2), we have
(24 y) = o(@+y)—0(0) = (e(®)—(0))+(e(¥)— 2(0)) = 7,(®)+ 7,(¥).

Moreover, we have by (2.4)
T, (A7) = @(Aw)— 0(0) = g,(4) 7o ().

In order to prove the converse implication of the theorem suppose
that reAut*(B) and ceV. Then ¢ = v+ c¢eS(V) since 7e8(V). Hence

we get ¢ '(x) = v (w)—v"'(¢c). Further, if f(2y,...,®,) = ) 4,
n k=1

> 4 =1, then we have

E=1 .

o(fle7 @)y oy (@) = o Jho™ (@) = v Dh(r (@) — 77N (o)) + o
k=1 k=1
= Do)t @) - (0)+ e = Y o(h)(@m—o)te = Y o, ().
k=1 k=1 k=1

n
Since Y A4, =1, we deduce that o 'ofop is an algebraic operation
k=1 .
of the algebra B°. One can easily show that the mapping f — f* = pofoe™!

is a permutation of the set of all algebraic operations of the algebra B°.
The theorem is thus proved.

Similarly to theorem (1.2) one can show the following

THEOREM 2.2. The group Aut*(B°) is the normal product of the groups
Aut(B) and Aut(A4).

3. Generalized linear spaces. Let V be a linear space over the field
A and let W be a linear subspace of V. Then the algebra

By = V4, {A}ieas {8}aew)
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is called a generalized linear space. Obviously, if W = {0}, then By, is an
ordinary linear space. Observe that every m-ary algebraic operation f of

the algebra Wy is of the form ' 4,x;+a, where acW and A® (W) = W.
k=1

Let {b;};c; and {b9};.;0 be bases for spaces V and W, respectively.
Let also peAut A, acAut((V;+, {#hs>), BeAut((W;+, {z};.4)), and

n m
= Zxkbik_i_z.ujbgj'
=

k=1

In a way similar to the proof of Theorem 1.1 one can prove

THEOREM 3.1. The mapping v is a weak automorphism of the algebra
Wy iof and only if

(3.1) (@) = Yok a(dy)+ D o(u)BbY).
k=1 j=1

THEOREM 3.2. There are monomorphisms hy: Aut*(By) — Aut(A4)
and hy: Aut*(By) - Aut* ((W;+, {Az};. D) such that

(**) kerh, N kerh, = Aut(Q}W)'

Proof. In order to find %, it is enough to observe that, similarly
to the proof of Theorem 1.1, the mapping defined by the formula ¢,(0) = 0
and ¢,(1) = A* is an automorphism of the field 4, and that Aut(A) is
the homomorphic image of Aut*(B,;) under the homomorphism k,(z) = ¢,.

In order to find h, it is enough to notice that the mapping 7, = 7 |W
is a weak automorphism of the algebra {(W;4, {ir},.,> and that the
mapping k,(z) = 7, is a homomorphism of the group Aut*(By,) onto
the group Aut(KW;+, {iz},.,>). Equality (**) is obvious.

4. Generalized affine spaces. Let V be a linear space over the field
A and let W be a subspace of V. The algebra

W =<V;{lv+puy+a}, where A, ued, 2+u =1 and aecW)

is called a generalized affine space.
We give an idea of a proof of the following

THEOREM 4.1. A mapping o 18 a weak automorphism of the algebra
B, if and only if

(4.1) o =po+oc,
where geAut* (By) and ceV.

Proof. If ce Aut*(BY), then o(z+y) = o(2)+ o(y)— ¢(0) and o(iz+
+(1—2)y) = Y o(x)+(1—1")o(y)+a". Hence o(ix) = ¢,(4)(o(2)—a(0)),
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where ¢,(A) = 1*. Let o,(x) = o(x)— o(0). Then o,e8(V) and o,|W eS(W).
It is sufficient to show that

0q€ Aut'* (<V; _I_ H {}'w}ls/l>) .

With this in view verify that there is g,(x+y) = o(x+y)—o(0)
= (o(@)—0(0))+(o(¥) —0(0) = 0o(2)+ e, (¥)-

It is easy to werify that o, (1z) = ¢,(4) o, (). Obviously, if o e Aut* (B
and ceV, then o = p+c¢ is a weak automorphism of the algebra Bj,
(cf. the proof of Theorem 2.1).

5. Unary abstract algebras having bases. Let W = (4 ; F) be a unary
algebra. The set A® = AW (A) of all algebraic operations can be consi-
dered as semigroup with identity and with a binary operation- (the super-
position of algebraic operatioys). We assume that %A has a basis (cf. [2]).

THEOREM 5.1. If U is a unary algebra having a basis, then veAut* (A)
if and only if t is of the form

(5.1) ©(2) = (¢f) (e(b),
where © = f(b), b is an element of a basis B, acAut A, and @peAut({4;->).

Proof. Let B be a basis of the algebra %. Then for r<A we have
x = f(b) for some beB. The mapping induced by b — 7(b) can be uniquely
extended to an automorphism e, of the algebra %. So we get 7(z) = z(f (b))
= f*(z(d)) = f*(a.(b)) and the mapping f — f* is an automorphism of the
semigroup (A"; ->. The opposite way is quite obvious.

THEOREM 5.2. If W is a unary algebra having a basis, then the group
Aut*(A) is the normal product of the groups Aut(N) and Aut({AW;->).

Proof. Let B be a fixed basis of 2. We have already shown that
there is a 1-1 correspondence between all weak automorphisms of % and
all pairs <{a, ¢, where aeAut(A) and @eAut(<AV; ->). If aeAut(A) and
@ eAut(<A"; ->), then we denote by «° the mapping A — A defined by

a’(b) = @(f)(d") i a(b) =f(b') and b, b'eB,
a®(g(b)) = g(a”(b)) for all geA.

One can check that «® is an automorphism of %A and that a; # a,
implies af # af. If &:b— f(b’) is an automorphism of 2, then & = o
provided a is an automorphism with a«(b) = (¢p~'f)(b’), the mapping
a” is a permutation of the set Aut A. We also have 1° = 1 and (af)® = a®f°.
Consequently, the mapping ¢ — o” is a homomorphism of Aut(<AY;-»)
into the group Aut(Aut (A)) (it is even a monomorphism). Clearly, if
71 =<ay, 91 and 7, = {a,, ¢,), then 7,7, = (a, ¢,@,). Butif ay(b) = f(b'),
then a(b) = 7,7,(b) = 1, (f(b’)) = (‘P1(f)) (a1(b')) and  a,a31(b) = a,(p.f)
(a1b') = (@uf) (a1 (b")). Therefore a = a,0ft and the theorem follows.
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6. v-algebras. A theorem on a representation of v-algebras due to
K. Urbanik (cf. [3]) implies that every v-algebra of dimension > 3 is one
of the algebras considered in sections 3,4 and 5 of the present paper.
Therefore we infer from Theorems 3.1, 4.1, and 5.1 the following

THEOREM. Every weak automorphism of a v-algebra of dimension > 3
has one of the forms (3.1), (4.1) or (5.1).

Thus weak automorphisms of a v-algebra of dimension >3 are
completely described.
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