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1. Introduction. The space X* (the dual space of X) of linear con-
tinuous functionals on linear metric semi-ordered space X constitutes
a subspace of the family X® (the add-dual spaec of X) of additive fune-
tionals on the same space. The formal definition of such functionals will
be given later on. HEven if X is a Banach space, in general there are
additive functionals which are not linear. The more so it is also true:
for linear metric spaces that are neither Banach nor even loeally convex,
and in general X* Z X%, For many spaces of measurable functions over
the finite measure space (S, %, u) (it is fixed in all this paper) with the
F-norm preserving the natural semi-order, the structure of their duals
is well known. We only mention the classical Riesz’ results concerning
both the spaces of continuous functions and the spaces £,(8, %, u),
p = 1. Also the Riesz-type theorem of Birnbaum and Orlicz [1] describing
the dual to the Orlicz space £,(®) is a convex Orlicz function satisfying
the 4,-condition), as the space 4, where ¥ is complementary to @ in
the sense of Young, is of our interest. On the other hand, there are a num-
ber of results explaining the structure of some add-dual spaces. We only
mention the results of Martin and Mizel [8] concerning add-dual to the
space of all bounded measurable functions over a finite atom-free measure
space, and results of Friedman and Katz [4] concerning the Banach space
of real-valued continuous functions on a compact metric space. Never-
theless, the case of non-locally convex spaces with no non-trivial linear
continuous functionals, as far as I know, has not yet been thoroughly
investigated. It seems to be especially interesting since then no ad-
ditive functional is linear. Merely Friedman and Katz [5] have recently
described (S, 4, u) for p > 0. On the other hand, Day [3] has proved
that for the spaces &,, 0 << p < 1, over an atomless measure space there
exist no linear continuous functionals except the trivial ones. The same
conclusion has been obtained for the space of all measurable functions
over an atomless measure space (with the topology induced by
convergence in measure) by Mazur and Orlicz [10], and for Orlicz
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spaces L,, where, by Gramsch [6],
lim [@(t)/t] = 0.
>0

The aim of this paper is to extend the Friedman-Katz description
of £ to the case of Orlicz spaces (Section 5). Simultaneously, our char-
acterization of additive functionals seems also a lot simpler. Further
(Section 6), by virtue of some theorems proved by Urbanik [13] and
Urbanik and Woyezyriski [14] connecting Orlicz spaces with the theory
of random measures, certain probability applications of our representa-
tion theorem are indicated.

The author is indebted to Professor K. Urbanik for his valuable
advices and encouragement.

2. Additive transformations and functionals. Let both X and 9 be
linear metric semi-ordered spaces with F-norms |- lx and [|+[ly, respecti-
vely. A mapping A of X into 9) is said to be an additive transformation
if A satisfies the following conditions:

(a) Continuity. For each ¢ > 0 and b > 0, there exists a § = §(b, ¢)
such that the inequalities [jx;|lz < b, [xs]x < b and |jx;—x./lz < 0 (¥, x¢X)
imply [|Ax, —Ax[ly < e. ‘

(b) Boundedness. For each b > 0, there exists a B = B(b) such
that [zl < b (xeX) implies [|Axly < B, i.e.

sup || Azxlly < oo.
zllg<<D

(¢) Additivity. If %, and ¥, are disjoint elements of X (|x,|Alxy] = 0),
then A(x;+x,) = Ax,;+Ax,. ‘

When 9) = R (space of reals) A is said to be an additive functional.
The linear space of all additive functionals on ¥ will be denoted by X°,
and its elements, as a rule, by x®, 1n® and so on. The foregoing definitions
are a modification of definitions given in [2], [4], [5] and [8].

3. Modular and Orlicz spaces. A linear semi-ordered space X, is
said to be modular (in the sense of Musielak and Orlicz [11]) if a fune-
tional M, called the modular, satisfying the following four requirements,
is defined on it:

I. M(x) = 0 if and only if x = 0;
II. M(x) = M(—x); |

I, M (ax+ fy) < M(x)+ M (y) for any a, f = 0 with a|f = 1.

IV. @, — 0 implies M (dnx) — 0 for any xeX.

Moreover, it becomes a complete linear metric space under the
non-homogeneous F-norm

lxllaz = inf{c: ¢ > 0, M(c7'x) < ¢}.
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If X is a modular space of measurable functions over a finite measure
space (8, #, u) with the usual semi-order < in it, then we shall assume
that M(x) < M(y) whenever x <<y, ¥,y > 0. M itself is then an additive
functional on ¥ in the sense of Section 2.

As examples of modular spaces, important for our purposes, we
indicate the so-called Orlicz spaces. In fact, consider a function @: Rt - R™
non-decreasing and continuous, vanishing only at zero, and tending to
infinity as the argument approaches infinity. The class of all functions @
satisfying the conditions mentioned above will be denoted by # and
we will refer to its elements as to Orliez functions. Only Orlicz functions @
that satisfy 4,-condition will be of our interest. Recall that ®@e A, if and
only if for some constants b > 0 and u, >0 we have ®(2u) < bd(u)
for w = u,. We still introduce the class "y = # of all Orlicz functions @
such that ‘

(@ (u)/u?] < e[®(v)v?]

for w = v = vy, where ¢ > 0 and v, > 0 are some constants.
For every real #-measurable function ¥ on the finite measure space
(S, #, u) we put

L(x) = [ D([x(s)) u(ds).
S

The set L,(8, #, ) of all #-measurable functions ¥ for which I,
is finite is a modular space with the modular I, and usual semi-order.
This is what is called an Orlicz space.

The set 2 of all Orlicz functions can also be semi-ordered in the
following manner. We say that @ ex" is non-weaker than ®,e#", and
write @, 3 @,, if for some constants a, £ > 0 and u, > 0, we have
D, (u) < a®y(ku) for u > u,. D, and D, are equivalent (P,~D,) if ©®, I O,
and @, 3 ®;,. We know [9] that £, = & for @, VeK, if and only if
@ ~ ¥. The equality £, = £, is understood here as an identity of under-
lying sets together with equivalence of topologies induced by norms
|'lle and |[|+|lx. It is also known that this topology is locally convex if
and only if @ is equivalent to some convex function from . The space L,
is then even a Banach space. Of course, we always identify functions
which are equal p-almost everywhere.

4. The simplest non-linear operator acting in Orlicz spaces. A real-
valued function K (f,s) defined on the Cartesian product R x 8 is said
to satisfy the Carathéodory conditions if and only if it is continuous with
respect to ¢ for w-almost all seS, and is #Z-measurable with respect to s
for every fixed t. By K (may be with indices) we denote the operator
acting on real-valued functions x(s), seS, by means of the formula .

(Kx)(s) = K(x(s), s).

Colloquium Mathematicum XIX.2 21
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It will be always supposed that K satisfies the Carathéodory condi-
tions. Denote by By(r) the ball {x: xe8, |xllp < 7).
THEOREM 4.1. If KO = 0, then the following statements are equivalent:
(1) K:B,(r) - £,(8, B, u) for some r > 0;
(ii) K: £4(8, Z, u) ~ (8, &, n);
(iii) K is continuous at every point of L4(8, %, p);
(iv) K is bounded, i.e., for every 0 < p < oo,
sup IIKBEIIM < 093
reBg(e)
(v) the inequality |K (, s)| < a®(t)+a(s) for — oo <t < oo and sef,
holds true with some a >0 and a(s)ef,.
Proof. The implications (v) = (ii), (iv) = (ii), (iii) = (ii) and (ii) = (i)
are obvious, and it suffices to prove the following ones: (i) = (ii), (ii) = (iii),
(ii) = (iv) and (ii) = (v). '
(i) = (i1). Let xef,. By the absolute continuity of I, we can write
x(s) in the form

x(8) = xo(8) +x.(8) +. .. +x(s),

where L,(x;) <»'(r), ¢+=0,1,...,k,» (r) 1is sufficiently small for
Il < r, and functions x; have disjoint supports for different indices
t=0,1,..., k. By our assumption

Ki;(s)Kx;(s) =0 for seS and 2 +# 7,
and

(1) Kx(s) = Kx,(s) +Kx, () +... + K (s). -

Since KB,(r) = £,, every function Kx;(s), ¢ =0,1,...,k% is an
element of €,, and by (1) and the linearity of £, so is Kx(s).

(ii) = (iii). In order to prove this we shall have to make use of the
following

LemmA 4.2 (ef. [7]). Let K;: 8, — ,. Then, in the norm of L,, the
operator K, is continuous, bounded and, moreover, for the function K, (t,s)
the inequality

K, (t, 8)] < aylt|4ay(s) for — oo <t< oo and seS,

holds true with some non-negative constant a, and a,eQ,.

Now, we shall show that K is continuous at 0eg,. Suppose that
X8, n =1,2,..., is a sequence of functions such that

(2) lim|x,/s =0 (<= lIiml,(x,) = 0).

N—>00 N—00
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This means that the sequence {®(x,)} of L;-functions converges to
zero in £;. The operator K, defined by the formula K,(-) = K& ()
(here, and in the sequel, @' denotes the function inverse to @) obviously
acts from £, into £,, and utilizing Lemma 4.2 we infer that it is con-
tinuous at zero. Applying now this result to the sequence {®(x,)} we see
that

lim f]K D (x,(s)]| p(ds) = lim finn(s)l,u(ds) = i),

N—>00 S n—o00 S

This ends the proof, for the continuity of K at an arbitrary point
¥€ Ly 18 equivalent to the continuity of the operator K,x = K (x,+x)—Kz,
&t Oﬁﬁgp.

(ii) = (iv). It is easy to see that the operator K, defined by the for-
mula

Ky (s) = K(e® 'Iy(s)l), o >0,

acts from 2, into £,. By Lemma 4.2 we have

sup [ [Kqn (s)| u(ds) < oo
Iyl <e
for every 0 < Q< co. Put y(s) = @(x(s)/e). The inequality |x|, < o

implies that I,p(x )Je) < o (see e.g. [11], p. 52), and thus we get in-
equalities

sup [ [Kx(s) u(ds) < sup [ [Ke(s)|u(ds) = sup [ [Kyn(s)| u(ds) < oo,
ltlp<e & Ip(z(9)/0)<e hh<e g
which complete the proof.

(ii) = (v). We remember that K, (y) = K& '(1y) acts from ¢, into €,
and, by virtue of Lemma 4.2, the inequality

(K (D7'(1),s)| < alt|+a(s) for — oo <t< ocoand sef,

holds true with some a =0 and a(s)e®,. Putting n(s) = ®(x(s)) we get
the thesis.

It should be still mentioned that in order to prove the equivalences
(ii) < (iii) <> (iv) <= (v) we do not need to assume that K0 = 0.

5. Representation of additive functionals on Orlicz spaces.

THEOREM 5.1. x®¢8Y if and only if

x = [K(x(s),s)u(ds), xely,
S

where
(a) K(0,s) = 0;
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(b) K(t,s) satisfies the Carathéodory conditions;
(¢) the inequality

K (t,s) <a®(t)+a(s) for — oo<t< oo and seS,

holds true with some non-negative constant a and aeQ.

(d) K is an additive transformation.

Proof. We shall utilize the following lemma, similar to that of
Friedman and Katz [5], Lemma 2. Tts proof is essentially the same and
we omit it.

LEMMA 5.2. For every x®eQ3 there ewists a kernel K'(t,s) and
a function B(s) such that

(2) K'(0,8) = 0;

(B) K'(t,s) satisfies the Carathéodory conditions;

(y) for each b > 0 there exists an H = H(b) such that |t| < b implies
|K'(t, 8)] < N for u-almost all seS;

(8) B(s) = dps/du for some py ~ p;
() x®(hyy,) = [ K (hy,(s), s)B(s)u(ds) for heR, where yy is the char-
K

acteristic function of the sel BeZA.
Now we put K(t,s) = K'(t,s)B(s). Obviously, K(t,s) satisfies
(a)-(¢) of Theorem 5.1. For each xef, define xPx by

(3) x = [ K(x(s), s)u(ds).
S

It remains to prove that x®z = xPx for all xeQy. In fact, these func-
tionals, being additive, continuous and bounded on &4, are equal on the
set of #-simple functions, which is dense in £, (condition A,!). Hence,
they are equal on the whole £,;. This completes the first part of the
proof. The converse follows immediately by virtue of Theorem 4.1.

6. Ind-additive functionals on non-gaussian random variables. Let be
S =1=1[0,1], # the c-algebra of all Borel subsets of the unit interval
and u Lebesgue measure on it. M is supposed to be a symmetric homo-
geneous random measure on I. For the definition and properties of such
a measure we refer to [12] or [14]. A random measure will be called non-
gaussian (gaussian) if all its values are non-gaussian (gaussian) random
variables. By [M] we denote the linear metric space spanned by the values
of random measure M and closed in the F'-norm induced by convergence
in probability. A random variable &e[M] if and only if it is of the form

§= [x(sM(ds), where zeZ(M),
I
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and #(M) stands for the space of all functions integrable with respect
to random measure M (see [14]). Now, there is a one-to-one correspondence
between elements of [M] and #(M). By introducing in # (M) the F-norm
induced from [M] via this correspondence these two spaces become iso-
morphic and will be treated as equal. In [14] it was proved that to every M
there corresponds a function @(M)ex’, such that Z(M) = L4 and,
conversely, for every function Pext’, there exists a symmetric homo-
geneous random measure M such that (M) = &;.

A functional T on [M] is said to be ind-additive if it is continuous,
bounded and such that the equality

T(f1‘|‘ &) = T(E1)+T(§2)

holds whenever random variables &, and &, are stochastically independent.
THEOREM 6.1. For non-gaussian random measures a functional T is
ind-additive on [M] if and only if T eR -
This theorem immediately follows from the following generalization
of the Bernstein-Skitovitch-Urbanik theorem:

THEOREM 6.2. If M 4s a homogeneous symmetric random measure,
random variables [x(s)M(ds) and [y(s)M(ds) are stochastically independent
i 1

and £(8)1 (s} # 0 on the set of positive measure u, then M is gaussian.
Urbanik [13] proved this theorem under the additional assumption
that M is a random measure with values having finite first moment.
The proof in the general cage is the same and we omit it.
From Theorems 5.1 and 6.1 we can easily deduce the following
CorROLLARY. If M is a non-gaussian random measure, then T is an
ind-additive functional on [M] if and only if it is of the form

T(¢) = fK(x(s),s),u(ds),
i

where K satisfies (j)-(jjj) of Theorem 5.1 and
¢ = [x(s)M(ds).
i

As to gaussian random measures N with independent values, it
is only known that every additive functional on £,(= £4x) is also
ind-additive on [N]. The converse is false by virtue of Theorem 6.2.
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