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In [2] Gordon and Lewis gave the first example of a sequence (E,)
of finite-dimensional Banach spaces whose unconditional basis constants
(and even constants of local unconditional structure) tend to infinity
with n. Their proof uses the language of Banach ideals and is rather compli-
cated. It was recently simplified by Schiitt in [3]. In this paper* we give
a Simple proof of the main theorem of [3]. As a corollary we observe that
the space of operators on IZ, equipped with a unitary invariant norm has
large unconditional basis constant unless this norm is close, in a sense,
to the Hilbert-Schmidt norm. In particular, in the case of the usual oper-
ator norm this constant is not smaller than m'?/8 (on the other hand,
it is obvious that it does not exceed m'/?). Other corollaries may be found
in [3]. ]

Let. us recall some definitions. Let E be a finite-dimensional Banach
space over the real field (in this paper we consider only such spaces) and
let (z,);~y be its basis. We define the unconditional constant of the basis
(@) as ~ ; |

ube(z,) = sup||T.,l,
where

(1) T.: 2 by — 2 ERAR

and the supremum is taken over all ¢ = (g,);-, € {—1, 1}". The uncondi-
tional basis constant of E is defined as follows:

ube(E) = infube (w,‘),

where the infimum is taken over all bases (z;) of E.
We define also the constant of local unconditional structure of E by

lust(E) = infju] o] ube (F)

* Supported in part by NSF Grant 76-0734.



274 8. J. SZAREK

with the infimum taken over all finite-dimensional spaces F' and all pairs
of linear operators «: E — F and v: F — E such that vow = idg. Obvi-
ously, lust(¥) < ube(F).

We say that a norm a on the space of operators on I}, is unitary invari-
ant if a(T) = a(UTYV) for any unitary operators U and V. It is well known
(see, e.g., [1]) that there exists a one-to-one correspondence between such
unitary invariant norms and symmetric norms on R™ (i.e. norms |||
satisfying [l(2,)ll = ll(xtawy)ll for any choice of signs ¢,, any permutation
n and any (t,) € R™). This correspondence is induced by the formula a(A)
=||(4)l, where A is the diagonal operator given by the sequence (4).
In particular, if (%) = (3 %I*)'"* (the I5-norm), we obtain the trace
classes with the unitary invariant norm ¢,; for p = 2 we get the Hilbert-
Schmidt norm, and for p = oo the operator norm.

Finally, for any finite set 8 and any function f: § — R, we define

Av f(s) = (card8)™* D' f(s).
8eS

8eS

Now we are able to formulate the following

THEOREM (Schiitt). Let E be a B-space with dimE = n and let (z,)
be its basis. Assume that for some G < {—1, 1}" and constants K, M the
following conditions are satisfied:

(i) ITN< K for s €@ (cf. (1));

(i) MY (1) < (card @) Y| Dt | for (8,) € B™.

Then ube(z,) < K*M? lust(E).

COROLLARY. Let a be a unitary invariant norm on the space of operators
on 12, Let |- || be the corresponding symmetric norm on R™. Set E = (R"‘z, a).
Then

(2)  lust(E) >} sup {max(lltll, 7Y t = () e B™, 38 = 1}.

In particular, lust(R™,e,) > fmiV2=1»!,

Proof. Let us consider elements of E as (m Xm)-matrices. We apply
the Theorem to the space E (and n = m?2). Choose (a:,‘);,’f,l to be a natural
basis consisting of matrices with only one nonzero element and G to be
the set of all matrices of signs (e;);y—, which may be represented as &;
= ;6; for some (%), (d;) € {—1, 1}™. Then (i) is obvious for K =1.
To prove (ii) for M = 2 we apply twice the Khinchine inequality (see,
e.g., [4]). Hence, by the Theorem, ubc(z;) < 4 lust(E).

Now to complete the proof of the Corollary it remains to estimate
from below the unconditional constant of the natural basis. To this end,
assume first that m = 2% for some positive integer d. Let w = (w;)7*;.,
be the Walsh matrix of the d-th order (which is an orthogonal matrix
consisting only of +1’). Choose any (t;) e R™, Jt; = 1, and consider two
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(m xm)-matrices z and 2’ defined by z; =t and 2 = {,w; for ¢,j =
=1,2,...,m. Then T,z =2, T,2' =2, a(z) =n'%, a(z') =a"2|(t)|
and, as a consequence,

ITpll = max ()], 1))

Taking the supremum over (t;) we prove (2) for m = 2% with } instead
of 3. The case of arbitrary m holds now in a standard way.

Proof of the Theorem. We begin with the following simple obser-
vation. Let ¥ be a B-space and (¥;)%-, its basis. Then ()

() ube(yy) = inf{C: V1), (@) € BY 3 ity < 0] Y tua]|| 3w
= inf{C: Vye ¥,9" e ¥* 3 lyi)lly" @)l < Clylly*1}.

The first inequality is a direct consequence of the definition of ube(y,),
the second one is obtained by reformulating the condition in the brackets.

Hence to prove the Theorem it is enough to show that, for any B-space
F, any unconditional basis (e¢;) of F, any operators 4: ¥ - F,v: F - E
satisfying v ou = idg, and any (a,), (t;) € R*, we have

2 lazt| < KM |jullllv]| ube (ey) - ]l =*]],

where # = Y't, @, and o = Y a,2}.
We have

Dlatel = D) latilai(a) = D labl( ) o} (ve)ef (uay))
k k k j

< D) D) \mai(vey)l 6] (uap)l,
i k

where the second equality follows from the fact that vuzy = x, for k =
=1,2,...,n. Now, by the Schwartz inequality,

D) lagt,| <2(2 Ia,,a:,",(w,)l”)l’z (2 It,e5 ('u:z:,,)lz)”2
k

WZ Av | ek%wn(wf)l Av | Sutuefwa)] by @)

(ep)e?
=M A T T
(ck).(nv,,)eaz [o*(Ze(@ ))("f)H“f(’“( «(@)))
< Mube(e) AV [l%(Ti(@)|[MTa@)] by )
k' k

(!) We denote by (z}), (y}), (e}) the dual bases to the bases (z,), (¥,). (¢,), respec-
tively.
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< Mube(ey) [o*|lllull[ Av  IT7HITI] el l*]
(o), (p)eG

< M*ube(ej) - wll w| B? llell &*|  (by (i)).
This completes the proof.

REFERENOCES

[1] A. II. ToxGepr u M. I'. KpeitH, Beedenue ¢ meopuio AuHEEHNZ HECAMOCONDANCEH-
HWZ onepamopos & euabbepmosom npocmparcmee, Mocksa 1965. English transla-
tion: Introduction to the theory of linear nonselfadjoint operators, Translations
of Mathematical Monographs, Vol. 18, AMS, Providence, R. I., 1969.

[2] Y. Gordon and D. R. Lewis, Absolutely summing operators and local uncondi-
tional structures, Acta Mathematica 133 (1974), p. 26-48.

[3] C. Schiitt, Unconditionality in tensor products, Israel Journal of Mathematics
31 (1978), p. 209-216.

[4] S.J. Szarek, On the best constants in the Khinchine inequality, Studia Mathematica
58 (1976), p. 197-208.

MATHEMATICAL INSTITUTE
POLISH ACADEMY OF SCIENCES
WARSZAWA

Regu par la Rédaction le 20. 12. 1978 ;
en version modifée le 6. 5. 1979



