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ON THE LATTICE BOUNDARY OF MARKOV OPERATORS

BY
WOIJCIECH BARTOSZEK AnD RYSZARD REBOWSKI (WROCLAW)

Let X be a compact Hausdorff space. By C(X) we denote the space of
all real-valued continuous functions on X. A linear operator T: C(X) — C(X)
is called Markov if T1 =1 and f > 0= Tf > 0. The main purpose of this
note is to investigate lattice properties of the space Cr of T-invariant
(continuous) functions. Davies in [2] and Re¢bowski in [3] have studied
lattice properties of C; for strongly ergodic Markov operators. We extend
[2] and [3] and obtain similar results under the weaker assumption that the
invariant functions form a lattice for the ordering inherited from C(X). In
some of our results even this lattice condition is omitted. In the first part of
our note we consider arbitrary Markov operators. We introduce here a T-
invariant subset 0T of the conservative set W of T (see [4] for the definition).
A simple consequence of our Theorem 1 is that two different T-invariant
functions are different on OT (Corollary 2). If strong ergodicity of T is
assumed, then the boundary 0T coincides with the one investigated in [2]. If
Cr forms a lattice, 0T also coincides with the boundary considered in [3]. In
the second part of the paper we assume that C; is a lattice. Under this
assumption we characterize those functions on 0T which have unique T-
invariant continuous extension (Corollary 3). Our last results describe those
Markov operators T for which there exists a Markov projection P such that
Cp = C; (Corollaries 5 and 6).

The notation and terminology follow [1] and [4]. We identify the dual
space of C(X) with the space M (X) of all Radon measures on X. The convex
and w*-compact set of all probability Radon measures on X is denoted by
P(X). A measure ue P(X) is called T-invariant if T* u = u. The set P;(X) of
all invariant probabilities is a nonempty convex and w*-compact subset of
P(X). A nonempty closed subset Y of X is said to be invariant if ye Y implies
T*4,(Y) = 1. Recall that Tis called strongly ergodic (uniformly mean stable in
[4]) if the Cesaro means

Af =n"1I+T+ ... + T YHf

converge uniformly for each f in C(X). The structure of Cy, for T strongly
ergodic, has been studied by several authors (see [2]-[5])).
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-Recall that a compact convex subset K of a locally convex vector space
is called a Bauer simplex if exK is closed and every point in K is the
barycenter of a unique Radon probability measure carried by ex K. Let E be
a closed linear subspace of C(X) containing the constants. We let

E'={ueM(X): VfeE (fdu=0}.

Denote by » the canonical projection of M(X) onto the quotient Banach
space M (X)/E*. Every f € E defines a linear functional {f, - ) on the quotient
space by the formula

f, % (W) = [fdp.

From the general theory of Banach spaces it is known that under this duality
M(X)/E* is the Banach dual of E. The mapping x is clearly weak*-weak*
continuous. Now set Q = %(P(X)) and for every feE denote by f the
function f(g) = {f, ¢)>, q€Q. Now f is clearly weak* continuous and affine
on Q, ie, fe A(Q). The following lemma is essentially known but for the
sake of completeness we present a proof here.

LeMMA 1. The mapping f —f is a linear order-preserving isometry of E
onto the space A(Q) of all weak* continuous affine functions on Q.

Proof. Since
A1l = sup {|{fdy: peP(X)} for every feC(X),

f —fis clearly a linear order-preserving isometry of E into A(Q). We prove
that every Fe A(Q) is of the form f for some feE. Given F, define f(x)
= F(%(d,)). Since both » and F are weak* continuous, feC(X). Every
u€P(X) can be viewed as a probability Radon measure on the extreme
points of P(X). Now

F(x(w) = F ox([8,du(x) = [F ox(8,)du(x) = [fd,

which implies (fdp = [fdv whenever x(u) =x%(v) and both u and v are
probability measures on X. Suppose f ¢ E. By the Hahn—Banach theorem,
there exists an ne E* with (fdn # 0. Since E contains the constants, n = n,
—1n,, ; 2 0, and 7, (X) = n,(X). Now we may clearly assume that », e P(X).
We have

x(ny) =x%(n2) and [fdn, # [fdn,,

a contradiction. The equality f = F is clear.

‘We recall that 4 (Q) is a lattice if and only if Q is a Bauer simplex (see
[1], p. 103). Letting E = C; we obtain the following result:

CoroLLARY 1. Cy is a lattice if and only if Q is a Bauer simplex.
Our Lemma 1 and Corollary 1 should be compared with Theorem 3 in
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[2] where, for strongly ergodic T, the role of Q is played by K = P,(X) and
a similar isomorphism between C; and A(K) is obtained (see also the
remarks following Corollary 2 below). For the rest of this paper we shall
assume that E = Cy.

THEOREM 1. Let T be a Markov operator on C(X) and

0T =cl{xe X: x(d,)eexQ}.
Then 0T is T-invariant and
supf (x) = sup f(x) for every feCy.

xeX

Proof. We show that supp T* 4, < 0T for »x(d,) = geex Q. Since x~'(q)
is a convex compact and extremal subset of P(X), there exists a closed subset
X, = X such that »~!(q) = P(X,). We have %(T*4J,) = q, so

suppT*6, < X, = dT.
Now by the weak* continuity of the map x — T* 4, it follows that dTis T-
invariant. As before, for every geexQ, x~!(q) = P(X o for some closed

subset X, of X. Given feCr the affine function f attains its supremum on
exQ. Usmg these two observations we obtain

sup \f(x): xedT} =sup | f(x): x(5,) eexQ}
= sup {[f (x) u(dx): x(u) cexQ}
=sup {f(g): geexQ}
=sup {f(9): 9@} =sup {f(x): xeX].

CoroLLArY 2. If f, g€Cr and f| ;g = gl, then f =g.
Let us observe that if T is strongly ergodic, then
x(u) =x(im A¥ ) for every ue P(X),
so u— x(p) is an affine isomorphism between Pr(X) and Q. Moreover, using
[4], it can easily by shown that the following conditions are equivalent:

(a) T is strongly ergodic,

(b) x restricted to Pr(X) establishes an affine isomorphism of P;(X)
and Q.

Consequently, if T is strongly ergodic, then 0T is the union of all
invariant cells of ¢ (equivalently, 0T = W), where (as in [4]) 2 denotes the
partition of X into the level sets of Cy. Thus, using [2] (Theorem 9), for
strongly ergodic T we have

= {xeX: |f(x)) = lim 4,]|f|(x) for feCy}.

Even without strong ergodicity we have the following extension of Theorem
9 in [2] providing, if Cr is a lattice, an intrinsic description of 4T (in [3] this
is the definition of 0T).

8§ — Collogquium Mathematicum LV.2
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THEOREM 2. If Cy forms a lattice in C(X), then
0T = {xe X: VfeCr mod(f)(x) =|f(x)},

where mod(f) is the lattice modulus in Cy.

Proof. Let x be such that x(d,)eexQ and let feC;. Using Lemma 1
we have

(mod () = mod ().

Now, Q is a Bauer simplex, so by the Bauer theorem (see [1], Theorem
I1.4.3) we have

Lf ()] = | f(>(8)] = mod () (x(8,)) = mod (f)(x).

To prove the converse inclusion we consider a point x such that mod (f)(x)
= |f(x)| for every fe Cr. Using Lemma 1 again, for every Fe A(Q) we have

mod (F) (x (3,)) = [F (x(5,))-

By the theory of Bauer simplexes, %(6,) = exQ and the proof is completed.

Remark 1. If Cy is a lattice, then by the Bauer theorem ex Q is closed,
and in the definition of 0T the closure can be dropped.

By 2 n 0T we mean the restriction of the partition 2 to the set 0T. For
every xe 0T by D(x) we denote the cell D of 2 N 0T with xe D. Now we
characterize the lattice condition in terms of extensions of functions from oT.

CoRroOLLARY 3. For any Markov operator T the following are equivalent:

(i) Cr is a lattice;

(i) every fe C(0T) which is constant on the cells of 2 N 0T extends
uniquely to some feCr.

Proof. (i) = (ii). For every xe 0T define Fe C(ex Q) by F(x(5,)) = f(x).
Since Q is a Bauer simplex, F extends uniquely to some affine continuous
function F on Q (see [1], p. 105). Consequently, there exists a function f €Cy
such that f = F. The equality f] =f is clear and, by Lemma 1, we have
the uniqueness.

(i) =(1). By the Bauer theorem it is enough to show that every
continuous function F on exQ can be uniquely extended to an affine
continuous function on Q. We put

F(e(w) = [ fap,
*where f = F(x(3,)) for xedT.
CoroLLARY 4. If Cr is a lattice, then there exists a natural order-
preserving isometry between Cr|g and C(ex Q).

The next results are similar to Sine’s results in [4] (Theorems 4.2 and
4.3). Using our Corollary 5 we can easily give an example of a Markov
operator Tsuch that C; forms a lattice but there is no Markov projection P
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with Cp = C;. Moreover, by Corollary 6, no such Cy can separate the points
of X.

COROLLARY 5. Let T be a Markov operator on C(X). Then the following
are equivalent:

(i) there exists a Markov projection P acting on C(X) such that C; = Cp;

(i) Cy is a lattice and there exists a family of probability measures
imp ) pe., ~ar Such that the mapping x — mp,,, from 0T to P(X) is weak * continuous
and satisfies mp,,(D(x)) = 1.

Proof. (i) = (ii). Since C, is a lattice, we only have to show the second
condition. Put mp,,, = P*4J,, where x € 0T. Since P*J, = P*J, whenever x, y
are in the same cell of ¥ (see [4]), mp,, is well defined and weak* continuous.
Since 0T = 0P by Theorem 2 and D(x) is P-invariant, we have

Mpy (D(x)) = 1.
(ii) = (i). For f eC(X) we define f'€eC(dT) by
' (x) = [f () mpix (dy)

and put Pf =f_;, wheref_’ is the extension of f’ as in Corollary 3. Now it is
easy to verify that P is a Markov projection and Cy; = Cp.

As a simple version of the above we have

CoROLLARY 6. If Cy separates the points of X, then there exists a Markov
projection P with Cy = Cp if and only if Cr is a lattice.
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