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0. Introduction. In [4] Sikorski generalized the notion of differentiable
manifold by introducing the notion of differential space (see also [2]). The set
of all tangent vectors and the set of all covectors tangent to a differential
space M of the form (set M, #(M)), where % (M) denotes the differential
structure of M, and set M its support, can be endowed with differential
structures to form the differential space TM tangent to M and the differen-
tial space T* M cotangent to M, respectively (see [3]). In [1] the space *TM
of all regular tangent covectors is defined. The aim of this paper is to study
some relations between *TM and T* M. We give the negative answer to the
question whether *TM can be regarded as a differential subspace of T* M
and we study when the answer to this question is positive. This makes a
partial solution to the problem P 1261 from the paper [1].

1. Cotangent space and regular cotangent space. By G,(M, p), where M is
a differential space and p is a point of M, we denote the real linear space of
all germs at p of functions from .%# (M) whose values at p are zero. The
quotient space Go(M, p)/G¢(M, p), where G%(M, p) is the linear space gen-
erated by the set laf: a, f€Gy(M, p)}, will be denoted by *T, M and called
the space of all regular covectors tangent to M at p. Its second dual will be
denoted by T;* M and called the space of all covectors tangent to M at p. We
can in a natural way regard *T, M as a subspace of T, M. More precisely,
we have the natural mapping

i *T,LM—-T)M
defined by the formula
(i, (W) (v) = v(w).
By T*M we mean the differential space with
setT*M =\ TM

pesetM
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and .# (T* M) generated (see [2], [5] and [6]) by the set
{aon; aeF(M) U {X; X e (M)},

where n: set T* M — set M, n(w) = p for we T M, (M) denotes the set of
all smooth vector fields tangent to M, X: set T* M — R is defined by the
formula

X (w) = w(X (m(w))).

Now we define the space *TM. Denote by da,e T} M, where ae # (M),
p is a point of M, the element [a—a(p), p]+ G3(M, p), where [B, p] denotes
the germ of B at p. We put

set*TM = () *T,M

peset M
and
F(*TM) = {EeR*°T™; for any finite B ¢ F (M)
there is (R® xset M3(c, p)—¢(Y. c,da,)e R)e F(R® x M)},

aeB
where F#(R® x M) = C®(R®) x #(M) is the standard product differential
structure in R® xset M. The projection

*n: set*TM —setM,

where *n(da,) = p for peset M and ae #(M), is a smooth function from
*TM onto M. Moreover, for any smooth vector field X on M we have
Xe F(*TM) (see [1]). Put

i(w) = i_n(w)(w) for weset*TM.

Then Xoi= X and noi = *n.

We can write the above remarks in the following form:

THEOREM 1. The mapping i: *TM — T* M is smooth for any differential
space M.

We will study when *TM can be regarded as a differential subspace of
T* M, more precisely, when the mapping

i~l: *T*M - *TM
is smooth, where *T* M denotes the space (i(set *TM), F(T* M), 1))

2. The question of smoothness of i~ '. Andrzejczak [1] proved that in the
case where M is a differentiable manifold the mapping i is a diffeomorphism.
We generalize this result.

We say that M has a finite local basis at a point p if there are a
neighbourhood U of p and vector fields X,, X,, ..., X, defined on M such
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that for any point g of U the vectors X, (q), X,(q), ..., X.(q) form a basis of
the space T, M tangent to M at q.

THEOREM 2. If M has a finite local basis at any point, then i is a
diffeomorphism.

Proof. We are to prove that for any ée #(*TM) and any point w of
*TM  there are smooth vector fields VY,,Y,,...,Y, on M,
Ay, 0g, ..., € F(M), feC*(R**', R) and a neighbourhood U, of w in
*TM such that

(@) =f(Y1(), Y2(0), ..., ¥i(v), ¢y 0*n(v), 2, 0*n (1), ..., 4, O *x(v))

for veU,.
Consider any ¢ and w as above. Put p = *an(w). Let B, g3, ..., B" be
smooth real functions on M such that dp}, dBZ, ..., dp; form a basis of

*T,M. Let X,, X,, ..., X, be any local basis of M at p on a neighbourhood
U, of p. For any i,je{l,2,...,n} we have X;(f)e #(M). Hence D
= det [ X;(p)); i, j < n] is a smooth function on M. Since D(p) # 0, there is a
neighbourhood U, c U, of p such that D(q)#0 for qeU,. Let A
= [d}; i, j < n] be the inverse matrix to B = [X;(p’); i, j < n]. The functions
a; are correctly defined on U,. For any i,j the function a} detB is a
polynomlal function of the coefficients of the matrix B. Hence aj is smooth
on the set U,. For 1 <I< nlet Y, be a smooth vector field on M equal to

Z ai X; on a neighbourhood of p. Then there is a neighbourhood U, of p

such that the fields Y, Y,, ..., Y, form a local basis of M at p on U; and,
moreover, for j,I<n and ge U3 we have

Y@ B) = ) a X:(9)(B) =5
i=1
By the definition of the differential structure of *TM, the mapping

@ =(R" xset M3(c,, c, ..., c,,,q)r——»{(i c;dp)eR)
i=1

is a smooth mapping of R" xM into R. By the definition of the product of
differential spaces, there is a mapping ¥ of the form

(C1s €2y eves Cas Q1 (C4s €25 ooy Cny 21(q), @2(q)s - -, 2 (q)),

where 2, a,,...,0,€F(M) and feC®(R**", R), such that ¢|VxU =
Y|V x U, where V is a neighbourhood of (Y; (w), Y,(w), ..., Y,(w)) in R" and
U c U, is a neighbourhood of p = *n(w).

We show that the set

Uy = {veset*TM; *n(v)e U and (Y, (v), Y2(v), ..., Y,()e V}
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is open in *TM. Since *a: *TM — M is smooth, the set *z~!(U) is open in
*TM. Similarly, the mapping

y = (set*TM 30 (Y, (v), Y2(v), ..., Y,(v))eR")
is smooth, which shows that y~!(¥) is open. Hence
Up=*n"'(U)ny (V)

is open. '
Now, it suffices to observe that for ve U, we have

f(Yi ), Y2(0), ..., Ya(v). a3 (*2(0)), 2z (*1(0)), ..., o (*2 (1))
= é(zn Y; (v) dﬂi‘:(v)) = {(v),

which completes the proof.
The following example shows that Theorem 2 cannot be generalized for
spaces with finite dimension of the tangent space at any point.

ExaMPLE 1. Put
set M = {(n, x); ne Nu {0}, xeR and x >0} U {(0, 0)}.

Let & (M) be the set of all real functions « defined on set M such that for
any n the function x~—a(n, x) is smooth, ie, can be extended to a C*-
function on R and for any n # 0 there is ¢ > 0 such that a(n, 6) = «(0, 0) for
o <e.

We verify directly that we have defined a differential space M. A point p
of M will also be written in the form (p,, p,).

We prove the following

LemMA (a version of the Hilbert theorem on basis). Let Py, P,, ... be
any polynomials in | variables over the field of reals. Then we find a natural N
such that for m > N we have P, el (P,, P,, ..., Py), where I1(P,, P,, ..., Py)
denotes the ideal generated by polynomials P,, P,, ..., Py in the ring
R[x,, X2, ..., X].

Proof.- The ideal I1.=I({P,; ne N}) is the union

[ 2]

U I(Py, P,, ..., P,).

n=1
Since I is finitely geneiated, we find N such that
I=I(Pl, Pz, ceey Pn).

Consequent_ly, we have P,el(P,, P,, ..., Py) for any natural m.
Now we can prove the following
THEOREM 3. The differential space M from Example 1 has finite dimension
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of the tangent space at any point. However, the mapping i is not a diffeomor-
phism.

Proof. Since M is locally difffomorphic to R in a neighbourhood of any
point peset M \{(0, 0)}, we have dim*T, M =1 for p # (0, 0). Moreover, we
have dim*T, o) M = 1, because for ae # (M) such that

«(0, h)
=

we have da o) = 0. Thus the tangent space has dimension 1 at any point.
Neighbourhoods of (0, 0) are sets U — set M such that for any nonnegative
integer n the set {x; (n, x)e U} L {0} is a neighbourhood of 0 in R* U {0}.

Denote by (p, @), where peset M, a e # (M), the derivative of a at p, i.e.,
the limit

lim

h—ot

0

h.ma(pl, p2+h)—a(py, p2)
h—0 h

in the case (p,, p,) # (0, 0) and the same limit with h — 0 replaced by h — 0"

in the case p, = p, = 0. This operation can be transported to elements of

*TM by setting do, = (p, «). The element dx, will be denoted by (p; da,).
Put for veset*TM

_ @™ for (*r(); #0,
¢@) = {O for (*r(v)); =0,

where (*n(v)); stands for the first coordinate of *n(v). We will show that
Ee F(*TM). Consider any o, a?, ..., a¥e #(M). We are to show that the
mapping & of the form

k
R* xset M 3(cy, 3, ..., &, P)—E(D, ¢ dad)
i=1
is in # (R* x M). 1t suffices to verify that any point p of M has a neighbour-

hood U such that ®|R* x U is smooth. For p with p, % 0 this statement
holds, because for q from the set N xR* we have

=

i=1

f(é ciday) = (Y c;dof)"

and the mapping set M 3q r—»de;', is smooth on a neighbourhood of p. For p
with p, = 0 we find a neighbourhood U of p such that ®|R* x U is a zero

mapping.
Now we will show that there is no function ¥: set *TM — R of the form

va(Xl (U), XZ(U)’ LR ] X,(U), Bl (*n(v))a ﬂ2 (*n(v)), LR} ﬂj(*n(v))),

4 — Colloquium Mathematicum LV.1
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where feC*(R'*/, R, X,, X,,..., X, are vector fields on M, and
Bi, B2, ..., Bj€F (M), such that Y|V = £| V for some open neighbourhood V
of a zero covector at (0,0). Let us consider any f, X,, X,,..., X,
Bi. Bz, ..., B, ¥, V as above and suppose that ¥ |V = ¢| V. Since V is open
in *TM and for any g eset M the mappings

setM3p—(p;0) and R>3ar(q;a)

are smooth, we find that the set {peset M; (p; 0)e V} is open in M and for
any g of M the set {acR;(q;a)eV} is open in R. For n=1, 2, ... let x,
denote a positive real such that for 0 < x < x, we have ((n, x); 0)e V and

Bi(n, x)=p,(0,0), B(n,x)=p,(0,0, ..., Bjn, x)=p;(0,0).
Putting, for i=1,2,....,land n=1, 2, ...,

D! = X;((n, x,): 1),
we ‘have
t"=Y¥((n, x,):t)=F(Djt,D5t,....D{1) for ((n. x,):t)eV,
where
F(ty, tas -.os t) = f(ty, tas ...s g, B1(0, 0), B5(0,0), ..., B;(0, 0)).

Since {teR; ((n, x,); t)e V} is an open neighbourhood of 0 for any n, we find
that for any natural m and n we have

F™ (D}, D3, ..., D}) = &}, n!,

where F™(t,, t,, ..., t;) denotes the m-th derivative of F at 0 in the direction
(ty, t2, ..., t). By the Taylor formula, F™ is a polynomial of variables
ty, ta, ..., t;. By the Lemma we find an N such that for any ¢,, t,, ..., ,eR
the condition

F™(t,t,...,t)=0 for n<N
yields
F™(t,, ty, ..., 1) =0
for any natural m. But we have
FODY*1, DY+, ...,DN*)=0 for n< N
and

FN+0(DY*1 DY+, DF*1) 2 0.
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This shows that {oi™'!¢ #(T* M). Therefore i~! is not smooth.
The following question seems to be interesting:

ProBLEM (P 1344). Is the mapping i a difftomorphism in the case where
M is a differential subspace of a differential space with a finite local basis at
any point? What is the answer when M is a differential subspace of a
Euclidean space? The autor does not know the answers.

Now we see that, in general, *TM cannot be regarded as a differential
subspace of T* M. However, Andrzejczak [1] proved that, in the case where
*T,M is of finite dimension, i, is a difftomorphism. In the last part of the
paper we show that this statement does not hold in general.

3. The case where *T,M is of infinite dimension. Now we study the
question of smoothness of addition of vectors and covectors tangent to a
differential space. First, we prove a general theorem.

THEOREM 4. Let N be a differential space whose support is a commutative
group (setN, +). Let us suppose that the differential structure of N is
generated by a set C of homomorphisms of (set N, +) into (R, +). Then the
addition +: set N xset N —set N is a smooth mapping from N x N into N.

Proof. We are to prove that for any ae C the mapping
set (N x N)3(q, r)—a(q+r)

is in # (N x N). It suffices to write this mapping in the form aon, +aon,,
where n, and =m, are the respective projections of N x N onto N.

CoroOLLARY. For any differential space M the addition of covectors tangent
to M at a point p is smooth with respect to the structure & (T* M) on

M.
We have similar conclusions for addition in the tangent space T, M and

the space *T* M of all regular covectors tangent to M at p with the structure
induced from T* M.

We give the example of a space M such that the addition of regular
covectors is not smooth with respect to the structure induced from *TM!
Consequently, we show that i, is not, in general, a diffeomorphism.

ExampLE 2. Let H be a separable Hilbert space. We regard it as the
differential space. Denote this space by M. Let set M be the set of all points
of H. By the differential structure on M we mean the set of all real C*®-
functions defined on H.

"M
14

THEOREM 5. The addition of regular covectors is not smooth in the space
(*To M, F (*TM)orgua).

Proof. For any a e # (M) denote by Da the derivative function of a. Da
is a C*-mapping from H into H. It is easy to see that for a, fe # (M) and
pesetM the condition da,=dp, yields Da(p) = Df(p). Setting ¢&(da,)
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= ||Da(p)l|> we have a real-valued function ¢ on set*TM. We show that
(e F(*TM). Let us consider any a’, a?, ..., a* from F(M). We have

é(Z ¢;dt) = IIZ ¢; D (p)||? = Z ¢; ¢; <Dei (p), Do’ (p) ).

Since for 1 < i, j < k the mapping p— {(Da’(p), Da’(p))> is smooth, we have
the smooth mapping

k
R* xset M 3(cy, c3, ..., &, p)—E() c;dai)eR
i=1

of R*xM. Hence {e #(*TM) and, consequently, {|*TyMe F (*TM)ur .
To prove that the addition in *T, M lS not smooth it suffices to show that
the mapping

*ToM x*To M 3(v, w)—E(v+w)

1S not in y(*TM)‘Tou X.?—(‘TM)OTOM.

Let us suppose that there are ¢,, @5, ..., @, ¥1, ¥2, ..., ¥, In
F(*TM)eru, f€C®(R™", R) and neighbourhoods U and V of 0 in *Ty M

such that for (v, w)e U x V. we have

é(U‘FW) = f(‘pl (v)’ (PZ(v)’ sy (Pn(v), ',’1 (W), 'I’Z(W)’ (RRK) l/l,,,(W))

We show that the above supposition leads to a contradiction. Consider any
orthonormal vectors x', x%,...,x"*! of H. Let o'(p)= (', p) for i
=1,2,...,n+1 and

n+1
h(c) = Y, ciday for ¢ =(cy, €35 ..., Cpsy) ERFL.
i=1

The mapping h: R"*!' - *Ty M is smooth (see [1]).. Moreover, for any
ceR""! we have

‘nv1

E(h() = llell* = Z cf
We have the smooth mapping F of the form

R xR 3(c, e) —|lc+ell?,

which is identical to

(¢, & — f (@1 (h(0), @2(h(O)), ..., @u(h(0)), ¥y (h(), Y2 (h(E)), ..., ¥m(h(e))
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on the open set h~!(U) xh™ ! (V) containing (0, 0). F is the function of 2n+2
-real variables, defined by the formula
nt+1
F(xy, X3, .oy X2p42) = Z (xi+xn+i+l)2°

i=1

Moreover, the functions
&, =¢,0h, &,=¢,0h, ..., &, =¢@,0h,
Y, =y,0h, ¥,=y,0h, ..., ¥Y.=Y,0h
are in C®(R"*!, R). Consider the matrix
A=[0,04;+1F0); 1 <i,j<n+1]
of partial derivatives of F at 0. We have
A=[20;1<i,j<n+1].

Hence rank A = n+1.
On the other hand, we have

600001 FO = 3 3 (8 00ssf)(®1(0), B30, ..., 8,(0),

k=11=1
¥,(0), ¥2(0), ..., ¥u(0) 6, 9, (0) 0; 7,(0) = gi A,
where
Al = 6, D,(0) Y, 9; ¥1(0)(0s Ops1 ) (P1(0), $5(0), ..., D,(0),
=1 _
' 'Pl (0)’ 'PZ(O)’ tecy '{’M(O))
Hence
A = i Ak!
k=1

where A, = [4Y;1<i,j<n+1] is a matrix of rank 1 for any k. Then
rank A < n, which contradicts the equality rank A = n+1. The proof is
complete.
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