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ON LUCAS AND LEHMER SEQUENCES
AND THEIR APPLICATIONS TO DIOPHANTINE EQUATIONS

BY

K. GYORY (DEBRECEN), P. KISS (EGER) anD A. SCHINZEL (WARSZAWA)

Consider a Lucas sequence {u,} = U(4, B) and a Lehmer sequence
{v,} = V(4, B) defined by
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respectively, where a,, f, are roots of the trinomial #* — Az + B, a,, f,
are roots of the trinomial #* — 4%z 4+ B, and A and B are relatively prime
non-zero rational integers such that a,/8, and a,/f, are not roots of unity.
As is known, %, and v, are rational integers. It is also known that for every
integer m > 1 with (m, B) = 1 both {w,} and {v,} have infinitely many
terms divisible by m, and that the sets of prime divisors of u, and of v,
(n =2,3,...) are infinite. There is an extensive literature of the linear
recursive sequences and their applications; for recent general results we
refer to the papers by Schinzel [14]-[18], Mignotte [10], [11], Stewart
[21]-[23], Loxton and van der Poorten [9], Kubota [6]-[8], Rotkiewicz
and Wasén [13], and to the references mentioned therein.

A prime p is called a primitive prime divisor of a Lucas number u,
it p divides w, but does not divide (a,—p,)*u, ... %,_,. Similarly, p
is called a primitive prime divisor of v, if p divides v, but does not divide
(a3 —B,)*(a;+B,)05 ... v,_,. By a more general theorem of Schinzel
(see Theorem 1 and its Corollary 2 in [18]), for any Lucas sequence {u,}
and for any Lehmer sequence {v,} the numbers %, and v, have primitive
prime divisors for » > n,, where n, is an effectively computable absolute
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constant. Using a recent result of Baker [1], Stewart [21] (see also [23])
computed explicitly the constant occurring in Theorem 1 of Schinzel [18],
and so he obtained the explicit value ¢*2-4% for n,. Furthermore, Stewart
proved in [21], [23] that there are only finitely many Lucas and Lehmer
sequences whose n-th term, n > 6, n % 8, 10 or 12, does not have a primi-
tive prime divisor and these sequences may be explicitly determined.

In this note we show that the above-quoted theorems of Schinzel [18]
and Stewart [21], [23] together with the effective estimates obtained for
the solutions of the Thue-Mahler equation (see, e.g., Coates [3], SprindZuk
[20], and Kotov and Sprind¥uk [5a]) and a recent result of Kotov [5]
imply the following

THEOREM. Let p,, ..., p, be a finite set of primes with max(p,) = P
{

and denote by 8 the set of non-zero integers which have only these primes
as prime factors. If t, i8 the x-th term of a Lucas sequence U (A, B) or a Lehmer
sequence V(4, B), x> 4 or xz > 6, respectively, and

1) t, ed,
then
r < max {¢**?-4%, P41}
and
max(|4], |Bl) < ey, [t < o,

where ¢, and o, are effectively computable numbers depending only on P and 8.

We remark that for # <6 or for # <4 and Lucas sequences our
theorem does not remain valid in general.

Recently Loxton and van der Poorten [9] have proved that if {u,}
is a fixed non-degenerate linear integer recurrence of order m > 2 whose
auxiliary polynomial has at least two distinet roots, then the set of posi-
tive integers » such that u, € § has density zero.

An easy corollary to our Theorem is as follows:

CoROLLARY 1. Let 8 be defined as in the Theorem. Then the equation
u*—v

u—9

(2)

w

tn integers z,%,v,w with >3, u>v>1, (u,9) =1, wel implies
e<P and max{u,w}<c,

where c, i8 an effectively computadble number depending only on P and s.

Denote by P(n) and »(n) the greatest prime factor and the number
of distinct prime factors of a positive integer n, respectively. The following
corollary is a special case of Corollary 1.
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COROLLARY 2. Let n > 1 be a fixzed rational integer. Then the equation

u* —o* .

U —9

nv

(3)

in integers x,y, u,v with >3, y=>1, u>0v>1, (u,v) =1 implies
z<P(n) and max{u,y}<ec,,

where ¢, 18 an effectively computable number depending only on P(n) and v(n).

Remarks. 1. Similar corollaries can be obtained by applying our
Theorem to special Lehmer sequences.

2. Szymiczek [24] proved that, for fixed w, v, equation (3) has at
most one solution in positive integers «, y.

3. In [19] Shorey and Tijdeman obtained a number of conditions
each of which implies the finiteness of the number of solutions of the
equation

u®—1

= bn¥
u—1 "

a

in integers 2 > 2, y > 1, ¥ > 1, #» > 1. From their result our Corollaries 1
and 2 follow in the special case v = 1.

4. Some special cases of equations (2) and (3) have been collected
by Hugh [4]. For further related equations and results the reader may
consult the papers [24], [4], [19] and [12].

Proof of the Theorem. Let ¢, be the x-th term of a Lucas sequence
U(A, B) or a Lehmer sequence V (A4, B). It is known (cf. [22]) that if ¢
is a primitive prime divisor of ¢, and « > 4, then # < max(4, ¢+1). Put

n, = max {6**-4%, P41},

If > n,, by the above-quoted theorem of Stewart [21], [23] ¢, has
a prime factor different from p,, ..., ,. So ¢, € 8 yields # < #,.

Let d > 3 be an integer and denote by @P;(y, 2) the d-th cyclotomic
polynomial in a homogeneous form. Let & = ¢4 and let « and # be roots
of the equation #*—Kx+B = 0, where K = A or K = A2, Olearly,
a+p = K and af = B. Put E = o + f*, where, obviously, ¥ = K* —2B.
Following Stewart [21], [23], we get

(4) Bula, B = ] ((a—&Ba—t"8) = [] ((*+ B~ (&+ & ap)
-]

t, t, d)=1
gd‘id[a g<tid[a

=FJ(E7 B)r

where F;(y, 2) is a homogeneous irreducible polynomial of degree ¢(d)/2
with rational integer coefficients. The maximum absolute value of its co-
efficients can be estimated from above by an explicit expression in d.
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Suppose now that ¢, € § and 6 < 2 < n,. Then we obtain
a®—f* az z
L=l [[own o -5 —[]ouan,
« diz dlz
a>1 az>3

whence, by (4), we have
[ Fa(E,B)es.

(5) iz
i d>’
- Thus
(6) F.(E,B)eS8.

In view of (4, B) = 1 we have (E, B) = 1.

If x # 8, 10 and 12, then F_(E, B) is of degree ¢(x)/2 > 3 and, by
the theorem of Coates [3] or SprindZuk [20], the Thue-Mahler equation (6)
has only finitely many solutions in integers F, B, and an effectively compu-
table upper bound ¢;(P, 8) can be given for max(|E|, [B]) and so also
for max(|4], |B|). In cases £ = 8,10 and 12 the left-hand side of equation (5)
has at least three distinct linear factors in £ and B and, using an appro-
priate formulation of a recent theorem of Kotov and Sprind¥uk [ba],
we also get max(|4|, |B|) < ¢, with an effectively computable number ¢
depending only on P and s.

- It remains to consider the case ¢, = u,, £ = b or 6. We have 4

= (2B —34% - 544 3t, = A[(3B — 24%)? —A4*] and, since (4,B) =1,
we obtain (2B —3A4% 4)|2 and (3B —24%, A)|3.

By a theorem of Kotov [6] on the greatest prime factor of aa™ gy
with m = 2, » = 4 the relations #; € § or {; € § imply

max(|2B —34%, |A|) < ¢;(P,8) or max(|3B—24%, |4])< ¢(P,s),
which gives an upper bound max(|4|, |B|).

Proof of Corollary 1. Suppose that (2) holds for some integers
x, u,v,w with >3, u>v>1, (4,v) =1, weS. Then (4®—9")/(u —v)
is the z-th term of the Lucas sequence {u,} = U(4, B), where 4 = u+9v
>0,B=uv>0and (4,B) =1, D = A*—4B #0.

First we derive the required upper bound for ». If p is a prime, plu,
and pfu,, for 0 < m < m», then, as is known, n < p (since D is a perfect
square). Furthermore, if » > 2, %, has a primitive prime divisor except
forn =6, 4 =2, v =1 (see [26] or [2]). Therefore, apart from z = 6,
u=2,v=1,u,e8implies z << P.Butifx =6, =2,v =1and %, €8,
then 8 must contain 7, and so # < P also holds.

In case z > 4 we may apply our Theorem and we get max(w,w)
< ¢y(P, s) with an effectively computable number ¢,(P, s). Finally, for
@ = 4, b and 6 it follows from the result of Coates [3] and SprindZuk [20]
that (2) has only finitely many solutions in u, v, w and max(u%, w) < ¢,
with an effectively computable number ¢, depending only on P and s.
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