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1. Introduction. If f(2) = z-+a,2*+ ... is analytic and univalen$ in
the open unit disk, then log (f(2)/z) belongs to H” for all 0 < p < oo, and
hence to () H”. As sets, () H” and lir_nH”, the projective limit of the H”

p<oo pP<0
spaces (1 < p < o0), can be identified. These observations suggest that

there are interesting connections between various classes of conformal
mappings and the projective limit. In this paper* we explore some of these
connections and we also develop various properties of the projective
limit.

First we observe that liEIHp is a Fréchet space with polynomials
dense, but it is not normable. It is shown (Theorem 2.1) that 1i<1_nH’° and

the projective limits of sets of boundary functions and L? functions are
related in a way similar to the situation in each individual H? space.
In the third section of this paper we consider sets of functions log ( f(2)/z)
for f running over the set of normalized univalent functions and for f
close-to-convex, or starlike, or spirallike. We examine the closure, con-
vexity, extreme points and isolated points of these sets {log(f(2)/z)} as
subsets of the projective limit 113115[”.

In Section 4 we consider operators on lir_nHI’. An example is given
which shows that a continuous operator on liglﬂp need not extend to a con-
tinuous operator on H? and need not be continuous on (1) H” with the
topology induced by H? (some ¢q € (1, o0)). We also list a few results about
composition operators on 1<i£nH”. In Section 5 we give a direct proof that
the dual of lim H” is- the inductive limit of the duals (H?)*, 1< p < oo.
An example shows that the dual (119 HP)* is a proper subset of H'. We also

show that lim H” is reflexive and that (lim H?)* is complete.

* This work is based on a portion of the second author’s Ph. D. dissertation [5].
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2. The space lim H?. In order to define the projective limit of the H”

spaces we introduc‘e_the Cartesian product [[H? (1 < p < oo) and denote
its elements by f = (f,), f, € H? for each p € [1, o). For each g € [1, o),
let m,: []H? — H? be the canonical projection =, ((f,)) = f, and, for each p
with 1 < ¢ < p < oo, let ¢,,: H? — H? be the inclusion map. The topology
on []H? is generated by sets of the form [ W ,, where each W, is open in H?
and =, (W,) = H? for all but a finite number of factors, i.e., the topology
of ‘“pointwise convergence’”’, since a net converges in the product if and
only if its projection converges in each factor.

Definition 2.1. The projective limit of the H? spaces for 1 < p < oo,
written lim H?, is the set of all elements f=(f) in [JH® such that,

whenever 1 < ¢g<p < oo,
nq(f) = tpqonp(f)'

The topology is the inherited topology.

Clearly, f = (f,) is in lim B if and only if f, = f, for all p, g € [1, o),
and limH” is a subspace of []H?. Note that lim H” is topologically isomorphic
to () H?, where the intersection has the topology generated by all sets
of the form V(() H”), and V is open in some H? Furthermore, the re-
striction of the projection =, to l;linH” (hence to (M) H?) is continuous,
and for each ¢ we can consider the set () H? as a subspace of H? with the
inherited topology. For additional information about projective and
inductive limits we refer the reader to Schaefer [9], Kelley et al. [6],
and Dugundji [3].

The integers are cofinal in the real numbers and, therefore,

limH? =1limH",
- -—

o0
where lir_nH" is considered as a subspace of the countable product [[H".

n=1

The countable product [[H" is a complete metric space with metric

(2.1) (fa) —(ga)ll = D 27"min {1, [If, — gull.}-

It follows easily that lil_n H? is a Fréchet space. By a standard argu-
ment one can show that the projective limit is not normable. For norm (2.1)
and f € H* we have ||(f)|| < ||fllo, and hence the inclusion map H* — lim H?
is continuous. -

The relationship between boundary values and the polynomials in
L? = ILP[ 0, 2] carries over to 1;1111 H?. We let #” denote the set of boundary
functions f(e%) for f € H?, and let Q” denote the set of polynomials as a sub-
set of LP”.



PROJECTIVE LIMIT OF HP SPACES 301

THEOREM 2.1. The space llm.#” 18 the ll.[an closure of the set of poly-
nomials llmQ”

Proof Since #? = Q" (the L? closure), we have
[]#7= n Q" and lim#*= ]imQ_”.

Furthermore, [] Q" = cl( [1Q7), where cl denotes the closure in []L”.

Since Q” is Hausdorff, llmQ” is closed in ”Q” and hence in [J]L?. It
follows that

cl(lim@?) = 1im@ = lim .

To show equality, we let =; ' (W) be a batic open set in llm H?, where W
is an open set in #’. Then there is a polynomial

g € II;H(W)nlimg?,
which shows that l(ian” is dense in lir_n #?, and hence
1 Py — i P
CI(IlE'Q ) = ll@.# .

Since #” (1 < p < o) is the class of L? functions whose negative
Fourier coefficients vanish, the following result is ilnmediate:

THEOREM 2.2. The space ligl H? 18 the class of functions in li<r_nL"
whose negative Fourier coefficients vanish.

Various other results of the H” theory relating to notions of inver-
tibility, zeros, outer functions, etc. can be properly interpreted and carried

over to the projective limit setting [5]. Finally, we mention that point-
wise multiplication in ] LIPHP is defined (componentwise) and continuous.

3. Schlicht functions and 1i£1 H?, We let & denote the class of functions
(3.1) f(2) =z+4+az22+ ...
that are analytic and schlicht (one-to-one) in the open unit disk D =
= {z: |2| < 1}. The normalization f'(0) = 1 in (3.1) is merely for conve-

nience in the subsequent discussion and entails no essential loss of genera-
lity. The connection between hm H? and & is the result of the assertion

that if f € &, then log(f(2)/2) belongs to M H? (0< p < o0) [1]. We always
mean the branch of the log that vanishes at z = 0.

THEOREM 3.1. The set L = {(log(f/[2)): fe )} is a closed subset of
1<i_me.

Proof. Let fes and let F(z) = (log(f/z)) be the corresponding
element of 1i£1H . For each p € [1, oo) the projection map =, (F) = log( fl?)
is continuous into H?, and convergence in the H” norm implies uniform
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convergence on compacta. Thus, it F, = (log(f,/2))eL (n =1,2,...)
and F', converges to F in ](iln H?, then there is a funection f € & such that f,
converges to f uniformly on compacta in D (clearly, f must be the same
in each of the H” factors, 1 < p < oo) and F = (log(f/2)) € L.

Remark. In a similar way one can show that the set {(log(f/z)) : fes,
f(D) convex} is closed in l(iﬂlﬂp. Similarly, one can replace “conYex” by
various other familiar subclasses of &, e.g., ‘“close-to-convex”, ‘‘starlike’,

“gpirallike”. Our next result shows that the sets associated with classes
of spirallike functions are convexa in the function space as well as closed.

We let Sp(y) (—w/2< y< =/2) denote the set of functions f(2)
= 24 a,2%+ ... that are analytic and satisfy Re {e"2f'(2)/f(2)} > 0 for
2 € D. This is the so-called class of y-spirallike functions (see [7], p. 171).
Each Sp(y) is a subset of &, and Sp(0) is the class of normalized starlike
functions. By means of the defining condition and the Herglotz integral
representation one can show that f(2) = 2+ a,22+ ... belongs to Sp(y)
if and only if there is a probability measure dm on [0, 2x] such that

2n
(3.2) logﬂﬂ = —Ze'i’cos;zf log(l—ze *)dm(t) for zeD
2
0

(cf. [2], p. 327). With representation (3.2) it is easy to see that the set
{(log(f/2)): feSp(y)} inherits the convexity of the set of probability
measures on [0, 2r]. Combination of this result with the observation
that Sp(y) is closed with respect to local uniform convergence yields

THEOREM 3.2. For each y € [—n[2, /2], the set {(log(f/2)): feSp(»)}
8 a closed convex subset of 1<i£n HP?,

By (3.2) and a slight modification of an argument given in [2], p. 331-
-332, we can establish the next result:

THEOREM 3.3. For fized y, the point (log(f/z)) is an extreme point
of the set {(log(f/2)): feSp(y)} in lim H” if and only if the support of the
associated measure dm in (3.2) consists of a single point.

We close this section with an observation about isolated points of
the set L. }

THEOREM 3.4. The set L = {(log(f/2)): fe %} has no isolated points
in lir_an.

Proof. If f(2) es, then f,(2) = f(rz)/r (0<r< 1) also belongs
to #. If we let F(z) = log(f(2)/z), then F(z) e H” for each p e[1, oo}
and F(rz) =log(f,(2)/2) converges to F(z) in the H” topology. Hence

-~

F(rz) = (F(rz)) e L and converges to F(z) = (log(f(z)/z)) in lim H?.
4. Operators on 1i<r_nH1’. It is of interest to investigate the bounded
linear operators on lir_n H?. We list a few results concerning a class of op-



PROJECTIVE LIMIT OF IHP SPACES 303

erators on 1i<1_nH”. These operators arise naturally in ccnsidering the H?
spaces and their properties have been studied by Schwartz in [10]. First
we observe that if A is a continuous operator on av H? space (1 < g < o0)
and if A maps () H? into (") H?, then an elementary application of the
closed graph theorem implies that A is continuous on hmH” The following
example shows that a continuous operator on llmH” need not extend
to a continuous operator on H?, and need not be continuous on (M) H?
with the induced H? topology.
Fix ¢ with 1 < ¢ < p < oo and define a funection f in H*\H? by

PP i 1 )—(1+6)/q
@) = (1= (T 10g -

, where ¢> 0.

Define a multiplication operator A on 1<iln H? by

)(1 +e)lg

1 _
A(h) = (;log 1= h(2) = g(2)h(2).

A i3 a linear operator and is continuous on 1<ilnH”. If A were con-
tinuous on the space () H? with the induced H? topology, we could

extend 4 to a continuous linear operator A on H?. Choose a sequence of
polynomla.ls {p,} converging in H? to f. A standard argument shows that
A(pn) tends pointwise to the function f-g. Hence, A( f) = fg, but this
is absurd, since fg is not in HY

We now list a few theorems on composition operators. If ¢ is an
analytic mapping of the unit disk into the unit disk, then C,(f) = fop
is a bounded linear operator on H” (1 < p < oo) and a sharp norm esti-
mate for C, is given by the inequality

1+1p(0) 1\
Il < (—"’— .
1—lg(0)]
Our earlier comments show that each such composition operator
is a continuous linear operator on lig}H”. A similar number can be

obtained for C, acting on lir_nH", but since the metric on lim H” is not

homogeneous of any degree, we do not denote it by ||C,|. The following
statement contains this estimate:
Iffelil‘{lﬂp and ¢: D — D, then

10, ()l < (l"’(l)nfn.
— lp(0)]

Rather than catalogue the list of theorems which hold for compo-
sition operators on 1i<r_1_1H”, we list only a sample.

oll-
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THEOREM 4.1. If {C, } converges uniformly to C, on 1i<r_nH” and if
each C, 18 compact, then C, is compact.

THEOREM 4.2. The operator C, i8 compact on l(ilnH” if and only if,

for every sequence {f,} such that f, - f subuniformly and {f,} is (topolo-
gically) bounded in lir_nH", we have Cp(f,) > C,(f) in liEal.

5. The dual of 1<i£nH”. For a topological vector space X, the dual of X,

consisting of all continuous linear functionals from X to C, will be
denoted by X*. For a projective limit lim X, the dual (li(r_nX“)* is known

if (1i<r_n X°)* and (X °)* are assumed to have certain topologies (see Schaefer
[9], p. 139-140). Since for lir_nHp we can give a more direct proof using

the original topologies, and since we can prove several other results using
the machinery of the direct proof, we will use basic concepts to investigate
the dual of l(iln H?. We, therefore, delay introducing the weak, strong,

and Mackey topologies until the end of the section, when we need these
concepts to show that lim H” is reflexive and that (liLnH‘")* is complete.

For 1< p< oo the dual (H?)* of H? is isomorphic to HY where
1/p+1/q = 1. The dual of H' can be identified with a subspace of L*.
In either case, the action is given by

0—- 40
Ao(f) = ff(ew)g(ew) o’ where f e H?, g € H?, and A, € (H")*

(see Duren [4], Chapter 7). We will write either g or 4,, depending on the
context.
If A, € (H")", then A,0m, is a continuous linear functional on lim H”.

This shows that | (H”)*, which we abbreviate to | (H?)*, is contained in

I<p<oo

(lim H?)*. Since also | (H?)* < H', we would like to know whether (lim H?)*

is actually all of H' or even larger. The following example shows that H'
is too large to be (li+r_nH”)"'.

Example. There is an f in li(l_an and a g in H' such that
o — d0
W) = [ £6") g 5
7

is not finite. Let f(2) = (—2"log(1—2))'** for some ¢ > 0. Since z/(1 —2)
is schlicht, —log(1 —=z) is in 121111", and so is f. Let

g(z) = (1—2)"Y(—2"log(1—z))~"*9,
By Privalov [8], p. 59, g € H', but g ¢ H? for p > 1.
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For 0< 0<2m we can write 1—¢° = 28in(0/2)e ®™2, Using
this, we have

. 0 6
log(1 —¢®) = log(2sin E) -}—7,——7E = u+v,

.2
and we define y by
p(0) = arg(u-+i») — arctan (1)
B
With this notation, the integral notation for 1, is

- d
W(f) = [(@—e") lexp{2(L+5)(m— 0+ p(0))} %

1 do
=5 [ expl2+e)(n—0-+ () o -

008(0/2) do
fs (o) 2T (- 0+w@)) 5+
003(0/2) a0

zf (o) 2+ (R —0+p(0)) -

1 —1 1
EE“(T) Lt gl

The integral I, is bounded and, by elementary symmetry properties,
one can show that I, = 0. The same symmetry properties allow us to rewrite
27'I, in the form

1, _fcos(0/2) in{2(1+e) (r— 0+ v (0)) _g%

8in (6/2)
We have
(m—06)/2
0) = arct
mty(0) = arotan —  Bein(0/2))
and for 6 > 0 near zero the approximation
(r—06)/2
7 0 [
TV~ g 2sin (0/2)]

i8 valid. In particular, for these 6 the integrand of I, is approximately

cos(6/2) {('n:— 0)/2 o}zi cos(6/2) (n — 6)

2(1
+e) Gnie2) “log6 — logf

0
—20085}-2(14—8),
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where we have used the approximation sinz ~ x for x near zero. This
function behaves as the function (6log6)~' on any small interval [0, ¢],
and so I; is a divergent integral.

In the remainder of this section we frequently refer to definitions
and some theorems which appear in the standard texts of Kelley et al. [6]
and Schaefer [9]. In order to keep the exposition clear and concise we
will include only those results and definitions imperative for our develop-
ment and give specific references to all others. A diagram is included to
indicate the various mappings and inclusions (Fig. 1).

’
limHP (fim

-

>.C

Definition 5.1. The coproduct or direct sum of the spaces (H”)Y,
1< p < oo, is denoted by [[(H?)* and is the subspace of [](H”)* consist-
ing of (g,), g, € (H?)*, such that g, = 0 for all but a finite number of p.
The injection

my: (HP) > [ [(E?)*
is defined as follows: for g e (H?)*, =, (g) is the element (g,) of [[(H")*
for which g, = 0if ¢ + p, and g, = ¢. The topology for | [ (H?)* is generated
by all subsets W of [ [(H?)* such that, for each p, 7}~ ' (W) is a neighbor-
hood of 0 in (H?)*.
By this definition, | [ (H”)* becomes a locally convex Hausdorff space.

Definition 5.2. For any p and ¢ with 1< ¢<p< oo, let 7,:
(H?%)* — (H?)* be the inclusion map.
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Each 7, is, of course, continuous and, for 1 <r<¢<p < o,
Tar = TpgO© Mgy
holds, since each map is inclusion. Thus {(H?)*: #;;} is an inductive spec-
trum.

Definition 5.3. The inductive limit of the spaces (H?)* with 1< p
< oo, Written lim (HP)*, is the quotient | [ (H?)* /N, where N is the subspace
of || (H?)* generated by the ranges of m; —m o7, for all 1 < ¢<p < oo.
The topology of lim (H?)* is the quotient topology.

Since the integers are cofinal in the real numbers, we have

. p*_. n*
lim (B?)* = lim (H")",

where lim (H™* is the quotient of [[ (H™)*. For the same reason we may

ignore (H')*, and do so since it is not another H” space.
From Kelley et al. [6], p. 120, we see that

llme (”H") /(llran) and (”H")* = U(H")*,

where the second correspondence is defined as follows: if ie([JH")",
then there is a (1,) e [[ (H")* such that

M) = Dhalfn)  for (f,) e [[H"

The sum is finite, since all but finitely many A, are 0. The topology
of (l<ilnH”)* is the quotient topology.

The proof of the first isomerphism in the next theorem is due to
B. S. Rajput.

THEOREM 5.1. The space (1i£1H”)* i8 topologically isomorphic to
lim (H?)* and to \J (H?)*, where the topology on the union is given as follows:
V is open in U (H?)* if and only if V n(HP)* is open in (HP)* for each p,
1<p< oo.

Proof. We first show the topological isomorphism of 1i_1>n (HP)* and
U (HP)*. Let @: [[(H?)* — U (H")* be defined by ®(g,) = >g,. The
sum is, of course, finite. We will show that ker® = N, where N is de-
fined in Definition 5.3.

Let (g,) e ker®. Then g, is non-zero only for q = ¢,, ..., qp. Let
P = max{q¢,...,q,}- The element

L )
24 (n;ig‘li - ”; ’7;0;'9'1:')

9 — Colloquium Mathematicum XXXVII.2
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where 2, corresponds to (g,) in the coproduct. The sum is finite. We will
show that as sets, N+ = llme
Let f € llme Hgisa generatmg element of N, then

(%) g = M gs—mansg, for some 1< 8<g< oo and g, e (H*)*

For ¢ in (]| (H?)*)* corresponding to f e imH” < []H?, we have

o) = 3 fp(ef?>m—§3

= [0, 52— [ Fle"au( 5
hence fe N-*.

Let (f,) € N+, and let ¢ € ([ [ (H?)*)* correspond to (f,). Let g defined
by (%) be in N. Since (f,) € Nl, we have

2 = D[ 160 ) o = [ 1,60 g — [ 1) 7e) g

. on——55— a0
- (fs(e"’)—fq(e“’))gs(e’”) = =0

Since this holds for every g, e (H®)*, we must have f, = f,. Since
we can do this for any s and ¢, we must have f, = f, for all p. Thus

f=f,) = (fy) elimB?,

and the proof of Theorem 5.3 is complete.

This suggests that l<ilnH" may be reflexive. To investigate this and
other questions we need the definition of weak, Mackey and strong topology
on a locally convex space E. We also need the definitions of the terms
‘‘parrelled”, ‘‘semi-reflexive”, ‘evaluable’’ and ‘reflexive”. These are
readily available in the two standard texts referred to above. We quote,
for reference purposes, a collection of results basic for our final theorems.

THEOREM 5.4. (a) Every Fréchet space is barrelled (Schaefer [9], p. 60).

(b) The inductive limit of a family of barrelled spaces is barrelled
(Schaefer [9], p. 60).

(¢) If the original topology on E is barrelled, then the original topology
and m(E, E*) coincide (Schaefer [9], p. 132).

(d) Every barrelled space is evaluable (Kelley et al. [6], p. 193).

(e) The projective limit of a family of semi-reflexive locally convex
spaces 18 semi-reflexive (Schaefer [9], p. 146).

(£) If E is locally convexr and semi-reflexive, then m(E", E) = s(E*, E)
(Kelley et al. [6], p. 190).
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(g) 4 locally convexr Hausdorff space is reflexive if and only if it is semi-
reflexive and evaluable (Kelley et al. [6], p. 194).

(h) If E is locally convex and metrizable, then E* is strongly complete.

THEOREM 5.5. The space 1<i_mH" 18 reflexive.

Proof. From Theorem 5.4 (a) and (d) it follows that li<_I_I_1Hp is eval-
uable. By (e), it is semi-reflexive. By (g), 1<i1nH” is reflexive.

THEOREM 5.6. On the space (li_IlIHp)*, the topologies

m(lg_n(H”)':, li<I_an’ and s(liLn(HP)*,ljlan)
coincide with the original topology.

Proof. By Theorem 5.4 (b) and (c), the original topology coincides
with m(li_r)n(H")*, (li_Ip(H")*)*), where (lim (H?)*)* is the dual with respect
to the original topology on l_i)m (H?)*. By Theorem 5.3 the original topology
coincides with m (li_r)n(H")*, li_r_n HP), which coincides with (11_r>n (HP)*, lil_n HP)
by Theorem 5.4 (f). )

THEOREM 5.7. The space lim (HP)* is mot metrizable, every bounded
subset i3 nowhere dense, and liLn (H?)* is of first category in itself. Further,
lim (H? )* is meither first nor second countable.

This follows from Theorem 5.6 and from Kelley et al. [6], p. 213.

THEOREM 5.8. The space li_r>n (H?)* is complete with its original topology.

This follows from Theorem 5.4 (h) and Theorem 5.6.
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