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ON A CERTAIN L-IDEAL OF THE MEASURE ALGEBRA

BY

K. IZUCHI (TOKYO)

0. Let @ be an infinite compact abelian group, and G the dual group
of G. Let M (@) be the Banach algebra of all bounded regular Borel measures
on G with total variation norm and convolution as multiplication. In
a paper by Hartman and Ryll-Nardzewski [56] the following question is
asked: .

Does there exist a continuous measure x on the circle group such
that {ne Z; |u(n)| > o} is not a Sidon set for some positive numbers a?

The existence of such a measure is showed in [4], [10] and [11].
We denote here by & (G) the set of all ue M (@) such that {y¢@; |u(y)| > o}
is a Sidon set for every positive number a. In this paper, we show that
&(@) is an L-ideal and study some of its properties.

1. For yu,ve M(G), we write u < » if u is absolutely continuous with
respect to ». A closed ideal (subalgebra) I of M (@) is called an L-ideal
(L-subalgebra) if uel and » € u implies vel. Let M (@) be the L-ideal
of M (@) which consists of all elements whose Fourier-Stieltjes transform
vanishes at infinity, and M, (@) the L-ideal of all continuous measures
on G. For pue M(G) and ye@, we put d(yu) = ydu. For ue M(G) and
a> 0, we put

E.(n) = {ye@; la(») > a}.

LEMMA 1 (Izuchi [7]). A closed ideal I of M (G) is an L-ideal if yuel
for every pwel and every y<@.

THEOREM 1. (@) 8 an L-ideal and My(G) = &(@).

Proof. Let u, 1e¥ (@) and a > 0. Then we have

Ea(tu +A) < Ealz(M)U-EaIZ(l) .

Since E,,(#) and E,,(A) are Sidon sets, E,(u+A4) is a Sidon set
by [2]. Thus we have u+1e¥(@). It is trivial that (@) is an ideal.
Suppose u,e#(G), pe M(@) and p,—p in norm. For a > 0, there exists
an integer n, such that |ju, —ull < a/2. Then we have K. (u) < E s ()
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so that ue ¥ (G). Hence & (@) is closed. Suppose ue ¥ (G). Then it is clear
that yue & (G) for every yeG. By Lemma 1, & (@) is an L-ideal of M (G).

COROLLARY 1. We have & (G) = M (G).

Proof. The Dirac measure J, does not belong to & (@). Since ¥ (@)
is an L-ideal, the assertion follows.

Let G, be a non-compact LCA group. Suppose that G is a dense
subgroup of @,, and consider G\ as a discrete abelian group. The dual
group G of G is then compact and abelian. Let ¢: G,—~G be the natural
injective map. Since Gogp = @,, we can consider @ as a subset of G,. For
pe M(G,), we put Pu(E) = u(p~'(E)) for every Borel set E of G. Then &
is an isometric isomorphism from M(@,) into M (@), so that M(G,) can
be considered as a subset of M (G). For ye@, we have (®Pu)” (y) = u(p).
Given two subsets M, and M, of M (@), we write M, | M, if every ue M,
is singular with respect to M,. We will show ¥ (@) | M(G,).

LEMMA 2 (see, e.g., Dunkl and Ramirez [3], p. 58). A Sidon set cannot
contain arbitrarily long arithmetic progressions.

LEMMA 3. Let M be an L-subspace of M(Q). If u¢S (@) for every
positive ue M, then M | & (G).

This is clear by Theorem 1.

THEOREM 2. Under the above notations, we have & (G) | M(G,).

Proof. For ue M(G@,) with u > 0, there exists a > 0 such that

E = {yeG,; |n(y)|.> a}20.

Let R" x K be an open closed subgroup of &,, where K is a compact
group ([12], Theorem 2.4.1).

Case I. n # 0. Since E is an open set in @, and @ is dense in @,,
there exist arbitrarily long arithmetic progressions in En@. By Lemma 2,
EN@ is not a Sidon set in @. Since ENG = E,(u), we have u¢¥(Q).
Since M (@,) is an L-subalgebra, we have ¥ (@) | M(G,) by Lemma 3.

Case II. n = 0. Since @, is not discrete, there exists an infinite com-
pact open subgroup K of @,. If /K is a finite group, then @, is a com-
pact group. Since @, is a discrete group, we have & (@) | M (&,) by Corol-
lary 1. If @,/K is infinite, then the annihilator K+ of K in @, is an open
subgroup. Then, by regularity of u, there exists x,e¢ G; such that
u(Kt+m) # 0. We may suppose that z, =0, and u is concentrated
on K-+. Then, for some a > 0,

{reGs; li(y)l > a}
contains K. Since KN @ is an infinite subgroup of &, E,(u) is not a Sidon
set. Thus we have u¢¥ (@) and £ (@) | M(G,) by Lemma 3.

COROLLARY 2. Let G, be a non-compact LCA group and let G be the
Bohr compactification of Gy. Then we have & (@)1 M(G,).
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Let v be a locally compact group topology on G which is strictly
stronger than the initial topology of @. By the natural embedding, we
can consider M(@,) = M(@). Moreover, @ is dense in @, (see Inoue [6]).

COROLLARY 3. We have & (G)_ | M(G,).

2. By Taylor [13], there exist a compact abelian topological semi-
group 8 and an isometric isomorphism 6 on M (@) into M (S), the measure
algebra on 8, such that

(1) 6(M (@) is a weak* dense L-subalgebra of M(S);

(2) the maximal ideal space of M(G) can be identified with S, the
set of all continuous semicharacters on S, and the Gelfand transform of
ue M(@) is given by

a(f) = [fabu for fei.
S

With the above in mind, M(G) and @ will be considered subsets

of M(8) and 8, respectively. The closure @ of @ in § is a subsemigroup
of 8. For fe8, we put

M(f)= {ue M(G); Ou is concentrated on O(f)},

where O(f) = {xeS; |f(z)] = 1}.

Definition. A closed subset E of G is called a Dirichlet set if, for
every ¢> 0 and for every compact subset K c @, there exists yeG\K
such that |y —1|<e¢ on E.

LEMMA 4. If E i8 a Dirichlet set of G, then we have ¥ (Q) 1 M (E),
where M (E) = {ue M(@); u 18 concentrated on E}.

Proof. Suppose the annihilator B! of F is an infinite subgroup.
For pue M(E) with x> 0, there exists a > 0 such that E,(u) o E+. Since
E+ is not a Sidon set, we get u¢ ¥ (@). Since M (E) is an L-subspace, we
have ¥#(G) | M(E) by Lemma 3. Suppose % is finite. For ue M (E) with
p = 0, there exists a > 0 such that E,(u) contains arbitrarily long arith-
metic progressions (cf. the proof of Theorem 1 of Graham [4]). Then
E,(u) is not a Sidon set by Lemma 2. Thus we have u¢¥(G) and
(@)1 M(E) by Lemma 3.

THEOREM 3. If feG\G, then & (@)L M(f).

Proof. Suppose feG\G. Then we easily get fc@\G (where f means
the complex conjugate of f). Since @ is a subsemigroup, f-feG@\G. As
M(f) = M(f-f), we may assume f> 0. Since fe@\@, there exists a net

{y.} in @ such that y,—f in the weak* topology on @. For any ue M(f)
with u > 0,

B > a(f) = [du and [ G.—1)au 0.
G G
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On the other hand,

([ Pa—1ldu)’ < lull [ 7.—112dp < 21pIRe [(1—7.)du.
G G G

Thus we have

flya—lld,u—>0 if @ oo,
G

By Egorov’s theorem, there exists a compact subset E of G such
that u(E) # 0 and a subsequence {y,} of {y,} such that y, -1 uniformly
on E. Thus E is a Dirichlet set and u¢ ¥ (@) by Lemma 4. Since M (f)
is an L-subalgebra, we have & (@) M(f).

Remark 1. Brown [1] showed that there exist many idempotents
in 4.

Remark 2. Let v be a locally compact group topology on G which

is strictly stronger than the initial topology of G. Since G, c @ (see
Inoue [6]), we get Corollary 3 also from Theorem 3.

Let H be the union of all maximal groups of S. We put
M(H) = {ue M(G); 6u is concentrated on H}.

COROLLARY 4. If ue M(H) and ue % (@), then ue M,(G).

Proof. Suppose u¢ My(G). There exists feé\G such that u(f) # 0.
Since ue M(H), we have unon | M(f). By Theorem 3, u¢%(G), a con-
tradiction.

A subset F of G is called an H,-set if

lull = suplas(y)] for every pe M(E).

?Ed
COROLLARY 5. If E i3 an H,-set, then & (G) | M (E).

Proof. We may assume that F is an infinite H,-set. For ue M (E)
with u > 0, there exists a Borel function f on E such that |f| =1 on E
and |(fu)" (p)| < lull for every ye@. Since E is an H,-set, there exists
a sequence {y,}>., of distinct elements of G such that

I(f)” (7a)] = Ifull = llpl.
Let y be a cluster point of {y,}3, in S. Then

2€@\G and  |(fp)" ()] = Iful = lul.

This shows that fue M(y). By Theorem 3, fu | #(G) and u | Z(GQ).
Thus we have & (G)_ | M (E).

Remark 3. If ¥ is a countable union of H,-sets, then M (E) ]| ¥ (G).
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Let E be a Dirichlet set of G, and K the subgroup of G generated
by E. We put

N(E) = {pe M(Q); |ul(K+x) =0 for every weG}
and
N(E): = {ue M(@); p LN (E)}.

THEOREM 4. If E is a Dirichlet set of G, then we have ¥ (G) « N (E).

Proof. Let ueN(E): and x> 0. We may assume that u is concen-
trated on K. Since

K =nglfn(Eu(—E)),

where n(Eu(—E)) = (BEu(—E))+...+ (BEu(—F)) (n summands), we
may, moreover, assume that u is concentrated on n(Eu ( —E)) for some
integer n. On the other hand, n(Eu( —E)) is a Dirichlet set, so that
piZ(G) by Lemma 4. Since N(E)! is an L-subalgebra, & (@) | N (E)*
by Lemma 3. Hence ¥ (@) = N (E).

3. Here we present some other results and problems. For ue M (@),
{n(f); feS} is called the spectrum of u. We denote by RadL'(@) the
radical of L'(@), i.e., the intersection of all maximal ideals of M (G) which
contain L'(@).

PROPOSITION 1. If ue%(G) and u has countable spectrum, then
ueRad L'(G).

Proof. If ue% (@) has countable spectrum, then ue M(H) (Izu-
chi [9]). By Corollary 4, we have ue My(G), so ueRad L} (@) (Izuchi [9]).

LEMMA 5 (Izuchi (8]). If ue M (@) and E, (u) i8 an infinite Sidon
set for some a > 0, then there exists B, 0 < f < a, such that Es(u)\E,(u)
18 an infinite sel.

The following proposition is clear by this lemma:

ProroSITION 2. If there is a > 0 such that E = E,(u) is an infinite
set and u(y) — 0 on the complement of E, then u¢S(Q).

In Corollary 5, we show that M(E) | (@) for every H,-set E. But
we do not know whether M(FE) | & (G) for every Helson set E. Fur-
thermore, it is an open-question whether (@) = M,(G). This holds if
uéZ(G) for every u> 0 such that w*xpu | My(G) (Y).

ProrositioN 3. If u> 0 and puxp | M(Q), then there exists a > 0
such that |yeE; {y+E}nE is infinite}, where E = E,(u), is an in-
finite set.

() Colin C. Graham has proved that & (G) = M,(G) (Non-Sidon sets in the
support of a Fourier-Stieltjes tramnsform, to appear in this journal, vol. 36). Thus,
the answers to both questions are affirmative. [Note of the Editors]
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Proof. We may assume |ull = 1. There exists a; > 0 such that
E, (1) is an infinite set. Let {Va}n=1 = B, (p) and let 4 be an accumula-
tion point of {y,u}3>, in M(G). Then A <€ x and 1 # 0, since |4(0)| > a,.
In view of uxA < u*u and (u*A) (0) #0, we have uxi 0 and
u*d | My(@). Then there is a such that a;, > a> 0, and E, (u*1) is an
infinite set. For yeE (u*1), there exists a positive integer %, such that

() @ap)” () = la(P)a(y +yu)l > a  for every n > n,.
Since {y,} < E,(u) and E,(u*A) = E,(u), the proof is complete.
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